Positive Association of the Dietary n-6/n-3 PUFA Ratio with Fatty Liver in Mexican Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometry
2.3. Dietary Evaluation
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teng, M.L.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S32–S42. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Mungamuri, S.K.; Gupta, Y.K.; Rao, P.N.; Ravishankar, B. Evolution of Non-Alcoholic Fatty Liver Disease to Liver Cancer: Insights from Genome-Wide Association Studies. Gene Expr. 2023, 22, 47–61. [Google Scholar] [CrossRef]
- Wong, V.W.; Ekstedt, M.; Wong, G.L.; Hagström, H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J. Hepatol. 2023, 79, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Rojas, Y.A.O.; Cuellar, C.L.V.; Barrón, K.M.A.; Arab, J.P.; Miranda, A.L. Non-alcoholic fatty liver disease prevalence in Latin America: A systematic review and meta-analysis. Ann. Hepatol. 2022, 27, 100706. [Google Scholar] [CrossRef]
- Ruiz-Manriquez, J.; Olivas-Martinez, A.; Chávez-García, L.C.; Fernández-Ramírez, A.; Moctezuma-Velazquez, C.; Kauffman-Ortega, E.; Castro-Narro, G.; Astudillo-García, F.; Escalona-Nandez, I.; Aguilar-Salinas, C.A.; et al. Prevalence of Metabolic-associated Fatty Liver Disease in Mexico and Development of a Screening Tool: The MAFLD-S Score. Gastro. Hep Adv. 2022, 1, 352–358. [Google Scholar] [CrossRef]
- Reinshagen, M.; Kabisch, S.; Pfeiffer, A.F.H.; Spranger, J. Liver Fat Scores for Noninvasive Diagnosis and Monitoring of Nonalcoholic Fatty Liver Disease in Epidemiological and Clinical Studies. J. Clin. Transl. Hepatol. 2023, 11, 1212–1227. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Lin, H.; Liang, L.Y.; Wong, G.L.; Wong, V.W. Non-invasive tests of non-alcoholic fatty liver disease. Chin. Med. J. 2022, 135, 532–546. [Google Scholar] [CrossRef]
- Kechagias, S.; Ekstedt, M.; Simonsson, C.; Nasr, P. Non-invasive diagnosis and staging of non-alcoholic fatty liver disease. Hormones 2022, 21, 349–368. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Importance of the omega-6/omega-3 balance in health and disease: Evolutionary aspects of diet. World Rev. Nutr. Diet. 2011, 102, 10–21. [Google Scholar] [CrossRef]
- Bishehkolaei, M.; Pathak, Y. Influence of omega n-6/n-3 ratio on cardiovascular disease and nutritional interventions. Hum. Nutr. Metab. 2024, 37, 200275. [Google Scholar] [CrossRef]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Mtoustaid-Moussa, N. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shakiba, E.; Pasdar, Y.; Asoudeh, F.; Najafi, F.; Saber, A.; Shakiba, M.H.; Bagheri, A. The Relationship of Dietary Omega-3 Fatty Acid and Omega-6 to Omega-3 Ratio Intake and Likelihood of Type 2 Diabetes in a Cross-Sectional Study. BMC Endocr. Disord. 2024, 24, 259. [Google Scholar] [CrossRef]
- Scaioli, E.; Liverani, E.; Belluzzi, A. The Imbalance between n-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. Int. J. Mol. Sci. 2017, 18, 2619. [Google Scholar] [CrossRef]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated Fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef]
- Cui, J.; Li, L.; Ren, L.; Sun, J.; Zhao, H.; Sun, Y. Dietary n-3 and n-6 fatty acid intakes and NAFLD: A cross-sectional study in the United States. Asia Pac. J. Clin. Nutr. 2021, 30, 87–98. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, H.; Xiang, B.; Li, D.; Liu, J.; Cai, Z.; Liu, Y.; Xiang, H. Total polyunsaturated fatty acid intake and the risk of non-alcoholic fatty liver disease in Chinese Han adults: A secondary analysis based on a case-control study. BMC Gastroenterol. 2021, 21, 451. [Google Scholar] [CrossRef]
- Van Name, M.A.; Savoye, M.; Chick, J.M.; Galuppo, B.T.; Feldstein, A.E.; Pierpont, B.; Johnson, C.; Shabanova, V.; Ekong, U.; Valentino, P.L.; et al. A Low ω-6 to ω-3 PUFA Ratio (n-6:n-3 PUFA) Diet to Treat Fatty Liver Disease in Obese Youth. J. Nutr. 2020, 150, 2314–2321. [Google Scholar] [CrossRef]
- Martínez-Aceviz, Y.; Sobrevilla-Navarro, A.A.; Ramos-Lopez, O. Dietary Intake of Capsaicin and Its Association with Markers of Body Adiposity and Fatty Liver in a Mexican Adult Population of Tijuana. Healthcare 2023, 11, 3001. [Google Scholar] [CrossRef]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Vega-Cárdenas, M.; Teran-Garcia, M.; Vargas-Morales, J.M.; Padrón-Salas, A.; Aradillas-García, C. Visceral Adiposity Index Is a Better Predictor to Discriminate Metabolic Syndrome than Other Classical Adiposity Indices among Young Adults. Am. J. Hum. Biol. 2023, 35, e23818. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Panduro, A.; Martinez-Lopez, E.; Roman, S. Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val) Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico. Nutrients 2016, 8, 101. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A Simple and Accurate Predictor of Hepatic Steatosis in the General Population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Torres-Castillo, N.; Silva-Gómez, J.A.; Campos-Perez, W.; Barron-Cabrera, E.; Hernandez-Cañaveral, I.; Garcia-Cazarin, M.; Marquez-Sandoval, Y.; Gonzalez-Becerra, K.; Barron-Gallardo, C.; Martinez-Lopez, E. High Dietary ω-6:ω-3 PUFA Ratio Is Positively Associated with Excessive Adiposity and Waist Circumference. Obes. Facts 2018, 11, 344–353. [Google Scholar] [CrossRef]
- Han, A.L. Association between Non-Alcoholic Fatty Liver Disease and Dietary Habits, Stress, and Health-Related Quality of Life in Korean Adults. Nutrients 2020, 12, 1555. [Google Scholar] [CrossRef]
- Lin, I.H.; Yu, Y.P.; Duong, T.V.; Nien, S.W.; Tseng, I.H.; Wu, Y.M.; Chiang, Y.J.; Chiang, C.Y.; Chiu, C.H.; Wang, M.H.; et al. Effect of Obesity and Metabolic Health Status on Metabolic-Associated Steatotic Liver Disease among Renal Transplant Recipients Using Hepatic Steatosis Index. Nutrients 2024, 16, 3344. [Google Scholar] [CrossRef]
- Sviklāne, L.; Olmane, E.; Dzērve, Z.; Kupčs, K.; Pīrāgs, V.; Sokolovska, J. Fatty liver index and hepatic steatosis index for prediction of non-alcoholic fatty liver disease in type 1 diabetes. J. Gastroenterol. Hepatol. 2018, 33, 270–276. [Google Scholar] [CrossRef]
- Martínez-Urbistondo, D.; San Cristóbal, R.; Villares, P.; Martínez-González, M.Á.; Babio, N.; Corella, D.; Del Val, J.L.; Ordovás, J.M.; Alonso-Gómez, Á.M.; Wärnberg, J.; et al. Role of NAFLD on the Health Related QoL Response to Lifestyle in Patients with Metabolic Syndrome: The PREDIMED Plus Cohort. Front. Endocrinol. 2022, 13, 868795. [Google Scholar] [CrossRef]
- Lopez-Pentecost, M.; Hallmark, B.; Thomson, C.A.; Chilton, F.; Garcia, D.O. Association between Dietary Fatty Acid Intake and Liver Steatosis and Fibrosis in a Sample of Mexican-Origin Hispanic Adults with Overweight or Obesity. Int. J. Environ. Res. Public Health 2023, 20, 3103. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, Y.; Zhang, B.; Li, D.; Yan, J.; Yang, J.; Sun, J.; Cao, H.; Wang, Y.; Zhang, F. Effects of Different N-6/n-3 Polyunsaturated Fatty Acids Ratios on Lipid Metabolism in Patients with Hyperlipidemia: A Randomized Controlled Clinical Trial. Front. Nutr. 2023, 10, 1166702. [Google Scholar] [CrossRef] [PubMed]
- Scorletti, E.; Byrne, C.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu. Rev. Nutr. 2013, 33, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N.; Caprio, S.; Feldstein, A.E. Oxidized metabolites of linoleic acid as biomarkers of liver injury in nonalcoholic steatohepatitis. Clin. Lipidol. 2013, 8, 411–418. [Google Scholar] [CrossRef]
- Araya, J.; Rodrigo, R.; Videla, L.A.; Thielemann, L.; Orellana, M.; Pettinelli, P.; Poniachik, J. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 2004, 106, 635–643. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Hao, L.; Chen, C.Y.; Nie, Y.H.; Kaliannan, K.; Kang, J.X. Differential Interventional Effects of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on High Fat Diet-Induced Obesity and Hepatic Pathology. Int. J. Mol. Sci. 2023, 24, 17261. [Google Scholar] [CrossRef]
- Gutierrez-Guerra, A.; Cambron-Mora, D.; Rodriguez-Echevarria, R.; Hernández-Bello, J.; Campos-Pérez, W.; Canales-Aguirre, A.A.; Pérez-Robles, M.; Martinez-Lopez, E. Dietary n-6:n-3 PUFA Ratio Modulates Inflammation-Related Gene Expression and Influences Improvements in Biochemical Parameters in a Murine Model of Diet-Induced Obesity. Nutrients 2025, 17, 1996. [Google Scholar] [CrossRef]
- Khadge, S.; Sharp, J.G.; Thiele, G.M.; McGuire, T.R.; Klassen, L.W.; Duryee, M.J.; Britton, H.C.; Dafferner, A.J.; Beck, J.; Black, P.N.; et al. Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology. J. Nutr. Biochem. 2018, 52, 92–102. [Google Scholar] [CrossRef]
- Pachikian, B.D.; Neyrinck, A.M.; Cani, P.D.; Portois, L.; Deldicque, L.; De Backer, F.C.; Bindels, L.B.; Sohet, F.M.; Malaisse, W.J.; Francaux, M.; et al. Hepatic steatosis in n-3 fatty acid depleted mice: Focus on metabolic alterations related to tissue fatty acid composition. BMC Physiol. 2008, 8, 21. [Google Scholar] [CrossRef]
- Pachikian, B.D.; Essaghir, A.; Demoulin, J.B.; Neyrinck, A.M.; Catry, E.; De Backer, F.C.; Dejeans, N.; Dewulf, E.M.; Sohet, F.M.; Portois, L.; et al. Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: Genomic analysis of cellular targets. PLoS ONE 2011, 6, e23365. [Google Scholar] [CrossRef]
- Liu, L.; Hu, Q.; Wu, H.; Wang, X.; Gao, C.; Chen, G.; Yao, P.; Gong, Z. Dietary DHA/EPA Ratio Changes Fatty Acid Composition and Attenuates Diet-Induced Accumulation of Lipid in the Liver of ApoE-/-Mice. Oxid. Med. Cell Longev. 2018, 2018, 6256802. [Google Scholar] [CrossRef] [PubMed]
- Soni, N.K.; Nookaew, I.; Sandberg, A.S.; Gabrielsson, B.G. Eicosapentaenoic and docosahexaenoic acid-enriched high fat diet delays the development of fatty liver in mice. Lipids Health Dis. 2015, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Shang, T.; Liu, L.; Zhou, J.; Zhang, M.; Hu, Q.; Fang, M.; Wu, Y.; Yao, P.; Gong, Z. Protective effects of various ratios of DHA/EPA supplementation on high-fat diet-induced liver damage in mice. Lipids Health Dis. 2017, 16, 65. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Landa-Gómez, N.; Barragán-Vázquez, S.; Salazar-Piña, A.; Olvera-Mayorga, G.; Gómez-Humarán, I.M.; Carriquiry, A.; Da Silva Gomes, F.; Ramírez-Silva, I. Intake of Trans Fats and Other Fatty Acids in Mexican Adults: Results from the 2012 and 2016 National Health and Nutrition Surveys. Salud Publica Mex. 2024, 66, 256–266. [Google Scholar] [CrossRef]
- Salvador Castell, G.; Serra-Majem, L.; Ribas-Barba, L. What and how much do we eat? 24-hour dietary recall method. Nutr. Hosp. 2015, 31 (Suppl. S3), 46–48. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Y.; Feng, Y.; Zhao, X.; Fan, Y.; Rong, J.; Zhao, L.; Yu, Y. Association between dietary sodium intake and non-alcoholic fatty liver disease in the US population. Public Health Nutr. 2021, 24, 993–1000. [Google Scholar] [CrossRef]

| Variable | Low HSI (n = 132) | High HSI (n = 81) | p Value |
|---|---|---|---|
| Demographics | |||
| Age (years) | 35.2 ± 12.1 | 41.5 ± 11.3 | <0.001 |
| Sex (F/M) | 98/32 | 34/49 | <0.001 |
| Anthropometrics | |||
| Weight (kg) | 66.3 ± 10.6 | 91.9 ± 16.0 | <0.001 |
| BMI (kg/m2) | 24.9 ± 3.8 | 33.0 ± 4.7 | <0.001 |
| Body fat (%) | 32.6 ± 8.6 | 39.6 ± 8.1 | <0.001 |
| WC (cm) | 82.1 ± 9.7 | 102.9 ± 11.4 | <0.001 |
| HC (cm) | 100.2 ± 7.1 | 113.8 ± 9.7 | <0.001 |
| WHR | 0.8 ± 0.1 | 0.9 ± 0.1 | <0.001 |
| NC (cm) | 34.6 ± 6.2 | 39.6 ± 4.2 | <0.001 |
| SBP (mmHg) | 120.9 ± 16.4 | 119.7 ± 20.3 | 0.647 |
| DBP (mmHg) | 78.4 ± 10.2 | 79.0 ± 9.7 | 0.722 |
| BAI | 22.9 ± 4.5 | 27.6 ± 4.7 | <0.001 |
| VAI | 3.6 ± 2.8 | 5.3 ± 3.3 | <0.001 |
| Nutritional profile | |||
| Total calories (kcal) | 1896 ± 678 | 2339 ± 1047 | <0.001 |
| Carbohydrates (%) | 42.7 ± 9.9 | 41.7 ± 8.7 | 0.458 |
| Proteins (%) | 19.1 ± 5.7 | 19.2 ± 5.6 | 0.975 |
| Fat (%) | 37.4 ± 8.0 | 37.8 ± 8.5 | 0.729 |
| Ratio n-6/n-3 | 10.4 ± 4.2 | 12.1 ± 4.9 | 0.012 |
| Variable | Low HSI (n = 132) | High HSI (n = 83) | p Value |
|---|---|---|---|
| Fasting glucose (mg·100 mL−1) | 92.6 ± 10.8 | 98.6 ± 14.3 | 0.001 |
| Total cholesterol (mg·100 mL−1) | 186.9 ± 38.8 | 200.1 ± 37.0 | 0.015 |
| LDL-c (mg·100 mL−1) | 118.8 ± 34.9 | 135.1 ± 31.5 | 0.001 |
| HDL-c (mg·100 mL−1) | 48.7 ± 13.5 | 40.6 ± 11.2 | <0.001 |
| Triglycerides (mg·100 mL−1) | 92.9 ± 56.6 | 131.2 ± 62.5 | <0.001 |
| Triglyceride/HDL ratio | 2.1 ± 1.5 | 3.9 ± 2.9 | <0.001 |
| ALT (IU·1000 mL−1) | 20.1 ± 10.7 | 40.1 ± 21.8 | <0.001 |
| AST (IU·1000 mL−1) | 36.6 ± 24.2 | 40.3 ± 10.7 | 0.201 |
| GGT (IU·1000 mL−1) | 15.1 ± 9.8 | 24.6 ± 17.6 | <0.001 |
| Variable | Low n-6/n-3 Ratio (n = 106) | High n-6/n-3 Ratio (n = 107) | p Value |
|---|---|---|---|
| Demographics | |||
| Age (years) | 37.4 ± 12.8 | 37.7 ± 12.1 | 0.877 |
| Sex (F/M) | 62/44 | 70/37 | 0.301 |
| Anthropometrics | |||
| Weight (kg) | 74.1 ± 16.6 | 78.5 ± 19.1 | 0.080 |
| BMI (kg/m2) | 27.6 ± 5.0 | 28.6 ± 6.4 | 0.185 |
| Body fat (%) | 35.6 ± 8.8 | 34.1 ± 9.5 | 0.431 |
| WC (cm) | 88.7 ± 13.4 | 91.4 ± 15.5 | 0.186 |
| HC (cm) | 104.8 ± 10.0 | 106.1 ± 11.0 | 0.344 |
| WHR | 0.8 ± 0.1 | 0.9 ± 0.1 | 0.275 |
| NC (cm) | 36.2 ± 7.0 | 36.8 ± 4.9 | 0.477 |
| SBP (mmHg) | 120.0 ± 18.8 | 121.0 ± 17.4 | 0.713 |
| DBP (mmHg) | 77.3 ± 9.1 | 78.8 ± 13.2 | 0.347 |
| BAI | 24.4 ± 5.7 | 25.2 ± 4.6 | 0.251 |
| VAI | 3.8 ± 2.9 | 4.7 ± 3.3 | 0.044 |
| Nutritional profile | |||
| Total calories (kcal) | 1985 ± 941 | 2132 ± 780 | 0.164 |
| Carbohydrates (%) | 43.3 ± 9.3 | 41.3 ± 9.6 | 0.134 |
| Proteins (%) | 19.3 ± 4.7 | 19.1 ± 6.3 | 0.818 |
| Fats (%) | 36.2 ± 8.3 | 38.8 ± 7.7 | 0.024 |
| Variable | Low n-6/n-3 Ratio (n = 106) | High n-6/n-3 Ratio (n = 107) | p Value |
|---|---|---|---|
| Fasting glucose (mg·100 mL−1) | 96.5 ± 13.8 | 93.2 ± 11.1 | 0.061 |
| Total cholesterol (mg·100 mL−1) | 194.5 ± 37.8 | 190.2 ± 39.1 | 0.413 |
| LDL-c (mg·100 mL−1) | 127.3 ± 33.8 | 123.4 ± 35.1 | 0.416 |
| HDL-c (mg·100 mL−1) | 48.0 ± 13.9 | 43.5 ± 12.4 | 0.012 |
| Triglycerides (mg·100 mL−1) | 102.1 ± 56.4 | 113.9 ± 66.0 | 0.163 |
| Triglyceride/HDL ratio | 2.37 ± 1.6 | 3.2 ± 3.6 | 0.031 |
| ALT (IU·1000 mL−1) | 26.2 ± 16.2 | 33.4 ± 39.5 | 0.086 |
| AST (IU·1000 mL−1) | 36.1 ± 8.7 | 40.3 ± 26.9 | 0.119 |
| GGT (IU·1000 mL−1) | 17.7 ± 11.2 | 20.3 ± 16.5 | 0.176 |
| HSI | 33.8 ± 6.7 | 35.9 ± 7.5 | 0.038 |
| Variable | OR (95% CI) | p Value |
|---|---|---|
| Age (years) | 1.04 (1.01, 1.07) | 0.003 |
| Sex (M) | 2.37 (1.15, 4.85) | 0.018 |
| Fasting glucose (mg·100 mL−1) | 1.02 (0.98, 1.05) | 0.121 |
| Total cholesterol (mg·100 mL−1) | 1.01 (0.98, 1.02) | 0.083 |
| Total energy (Kcal/d) | 1.01 (1.0, 1.01) | 0.007 |
| n-6/n-3 ratio | 1.48 (1.02, 1.99) | 0.007 |
| Adjusted R2 | 0.18 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez-Osorio, C.; Ramos-Lopez, O. Positive Association of the Dietary n-6/n-3 PUFA Ratio with Fatty Liver in Mexican Adults. Healthcare 2025, 13, 2679. https://doi.org/10.3390/healthcare13212679
Gutierrez-Osorio C, Ramos-Lopez O. Positive Association of the Dietary n-6/n-3 PUFA Ratio with Fatty Liver in Mexican Adults. Healthcare. 2025; 13(21):2679. https://doi.org/10.3390/healthcare13212679
Chicago/Turabian StyleGutierrez-Osorio, Cristina, and Omar Ramos-Lopez. 2025. "Positive Association of the Dietary n-6/n-3 PUFA Ratio with Fatty Liver in Mexican Adults" Healthcare 13, no. 21: 2679. https://doi.org/10.3390/healthcare13212679
APA StyleGutierrez-Osorio, C., & Ramos-Lopez, O. (2025). Positive Association of the Dietary n-6/n-3 PUFA Ratio with Fatty Liver in Mexican Adults. Healthcare, 13(21), 2679. https://doi.org/10.3390/healthcare13212679

