Effects of Virtual Reality Based on Fall Prevention Intervention: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
- (1)
- For the inclusion criteria, the core data selected were the participants, interventions, comparisons, outcomes, and study design (PICO-SD).
- Population: This study included all Korean and international participants.
- Intervention: The intervention was fall prevention utilizing virtual reality (VR).
- Comparison: The control groups received either no intervention or maintenance of the existing program.
- Outcome: The intervention outcome was a study that presented fall-related variables, including falls.
- Study design: Randomized and non-randomized controlled trials were included.
- (2)
- The exclusion criteria were as follows: a. studies for which the original text was unavailable; b. studies published in a language other than English or Korean; and c. publications written in the form of qualitative studies, reviews, dissertations, and conference presentation abstracts.
2.3. Search Strategy and Selection
2.4. Risk of Bias
2.5. Assessment of Evidence Quality
2.6. Statistical Analysis
2.6.1. Effect Size Analysis
2.6.2. Publication Bias and Sensitivity Analysis
2.7. Ethical Considerations
3. Results
3.1. Study Characteristics
3.1.1. Results of Risk of Bias
3.1.2. Certainty of Evidence: GRADE
3.2. Meta-Analysis
3.2.1. Effects of VR-Based Fall Prevention Intervention on the FES and the Number of Falls
3.2.2. Subgroup Analysis
3.2.3. Results of Publication Bias and Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Center for Disease Control and Prevention (CDC). Facts About Falls. Available online: https://www.cdc.gov/falls/data-research/facts-stats/index.html (accessed on 9 May 2024).
- Truijen, S.; Abdullahi, A.; Bijsterbosch, D.; van Zoest, E.; Conijn, M.; Wang, Y.; Struyf, N.; Saeys, W. Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: A systematic review and meta-analysis. Neurol Sci. 2022, 43, 2995–3006. [Google Scholar] [CrossRef]
- Verma, S.K.; Willetts, J.L.; Corns, H.L.; Marucci-Wellman, H.R.; Lombardi, D.A.; Courtney, T.K. Falls and fall-related injuries among community-dwelling adults in the United States. PLoS ONE 2016, 11, e0150939. [Google Scholar] [CrossRef]
- Jo, K.M.; Kim, M.Y. Risk factors of moderate to severe injury among the elderly after a fall. J. Korean Gerontol. Nurs. 2019, 21, 33–40. [Google Scholar] [CrossRef]
- Kim, G.D.; Heo, M. Effects of Swiss ball exercise program for improvement of life care on balance and gait in local community elderly. J. Korean Entertain. Ind. Assoc. 2018, 12, 353–359. [Google Scholar] [CrossRef]
- Li, L.; Yu, F.; Shi, D.; Shi, J.; Tian, Z.; Yang, J.; Wang, X.; Jiang, Q. Application of VR technology in clinical medicine. Am. J. Transl. Res. 2017, 9, 3867–3880. [Google Scholar]
- Chun, H.W.; Han, M.K.; Jang, J.H. Application trends in VR. Electron Telecommun. Trends 2017, 32, 93–101. [Google Scholar] [CrossRef]
- Ren, Y.; Lin, C.; Zhou, Q.; Yingyuan, Z.; Wang, G.; Lu, A. Effectiveness of virtual reality games in improving physical function, balance and reducing falls in balance-impaired older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2023, 108, 104924. [Google Scholar] [CrossRef]
- Cano Porras, D.; Siemonsma, P.; Inzelberg, R.; Zeilig, G.; Plotnik, M. Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review. Neurology 2018, 90, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Adamovich, S.V.; Fluet, G.G.; Tunik, E.; Merians, A.S. Sensorimotor training in virtual reality: A review. NeuroRehabilitation 2009, 25, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Pérez, I.; Osuna-Pérez, M.C.; Montoro-Cárdenas, D.; Lomas-Vega, R.; Obrero-Gaitán, E.; Nieto-Escamez, F.A. Virtual reality-based therapy improves balance and reduces fear of falling in patients with multiple sclerosis. a systematic review and meta-analysis of randomized controlled trials. J. Neuroeng. Rehabil. 2023, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Park, B.M. Development and effect of a fall prevention program based on King’s theory of goal attainment in long-term care hospitals: An experimental study. Healthcare 2021, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Jahanpeyma, P.; Kayhan Koçak, F.Ö.; Yıldırım, Y.; Şahin, S.; Şenuzun Aykar, F. Effects of the Otago exercise program on falls, balance, and physical performance in older nursing home residents with high fall risk: A randomized controlled trial. Eur. Geriatr. Med. 2021, 12, 107–115. [Google Scholar] [CrossRef]
- Cho, M.Y.; Kim, D.S. Effect of the arthritis self-management program on elderly women living alone in the community. J. Muscle Jt. Health 2024, 31, 1–11. [Google Scholar] [CrossRef]
- Kayabinar, B.; Alemdaroğlu-Gürbüz, İ.; Yilmaz, Ö. The effects of VR augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: A randomized controlled single-blind trial. Eur. J. Phys. Rehabil. Med. 2021, 57, 227–237. [Google Scholar] [CrossRef]
- Pimenta Silva, D.; Pona-Ferreira, F.; Santos, B.; Campo-Prieto, P.; Bouça-Machado, R.; Ferreira, J.J. Safety of Immersive Virtual Reality for the Management of Parkinson’s Disease. Sensors 2024, 24, 8188. [Google Scholar] [CrossRef]
- Stanmore, E.K.; Mavroeidi, A.; de Jong, L.D.; Skelton, D.A.; Sutton, C.J.; Benedetto, V.; Munford, L.A.; Meekes, W.; Bell, V.; Todd, C. The effectiveness and cost-effectiveness of strength and balance Exergames to reduce falls risk for people aged 55 years and older in UK assisted living facilities: A multi-centre, cluster randomised controlled trial. BMC Med. 2019, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Kanyılmaz, T.; Topuz, O.; Ardıç, F.N.; Alkan, H.; Öztekin, S.N.S.; Topuz, B.; Ardıç, F. Effectiveness of conventional versus VR based vestibular rehabilitation exercises in elderly patients with dizziness: A randomized controlled study with 6-month follow-up. Braz. J. Otorhinolaryngol. 2022, 88, S41–S49. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, I.J.; van de Port, I.G.; Punt, M.; Abbink-van Moorsel, P.J.; Kortsmit, M.; van Eijk, R.P.; Visser-Meily, J.M.; Meijer, J.-W.G. Effect of VR gait training on participation in survivors of subacute stroke: A randomized controlled trial. Phys. Ther. 2021, 101, pzab051. [Google Scholar] [CrossRef]
- Bekkers, E.M.; Mirelman, A.; Alcock, L.; Rochester, L.; Nieuwhof, F.; Bloem, B.R.; Pelosin, E.; Avanzino, L.; Cereatti, A.; Della Croce, U.; et al. Do patients with Parkinson’s disease with freezing of gait respond differently than those without to treadmill training augmented by VR? Neurorehabil. Neural Repair 2020, 34, 440–449. [Google Scholar] [CrossRef]
- Molhemi, F.; Monjezi, S.; Mehravar, M.; Shaterzadeh-Yazdi, M.J.; Salehi, R.; Hesam, S.; Mohammadianinejad, E. Effects of VR vs conventional balance training on balance and falls in people with multiple sclerosis: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2021, 102, 290–299. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; pp. 1–400. [Google Scholar]
- Riley, R.D.; Higgins, J.P.; Deeks, J.J. Interpretation of random effects meta-analyses. BMJ 2011, 342, d549. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Hwang, S.D. Meta-Analysis Using R, 2nd ed.; Hakjisa: Seoul, Republic of Korea, 2020; pp. 258–263. [Google Scholar]
- Duval, S.; Tweedie, R. Trim and Fill: A simple funnel-plot based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Levy, F.; Leboucher, P.; Rautureau, G.; Komano, O.; Millet, B.; Jouvent, R. Fear of falling: Efficacy of VR associated with serious games in elderly people. Neuropsychiatr. Dis. Treat. 2016, 12, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Montero-Alía, P.; Miralles-Basseda, R.; López-Jiménez, T.; Muñoz-Ortiz, L.; Jiménez-González, M.; Prat-Rovira, J.; Albarrán-Sánchez, J.L.; Manresa-Domínguez, J.M.; Andreu-Concha, C.M.; Rodríguez-Pérez, M.C.; et al. Controlled trial of balance training using a video game console in community-dwelling older adults. Age Ageing 2019, 48, 506–512. [Google Scholar] [CrossRef]
- Lazar, I.A.M.; Ramachandran, I.A.S. Effect of immersive virtual reality on balance in elderly population. NeuroQuantology 2023, 21, 418. [Google Scholar] [CrossRef]
- Pelosin, E.; Cerulli, C.; Ogliastro, C.; Lagravinese, G.; Mori, L.; Bonassi, G.; Mirelman, A.; Hausdorff, J.M.; Abbruzzese, G.; Marchese, R.; et al. A multimodal training modulates short afferent inhibition and improves complex walking in a cohort of faller older adults with an increased prevalence of Parkinson’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Del Din, S.; Galna, B.; Lord, S.; Nieuwboer, A.; Bekkers, E.M.; Pelosin, E.; Avanzino, L.; Bloem, B.R.; Rikkert, M.G.M.O.; Nieuwhof, F.; et al. Falls risk in relation to activity exposure in high-risk older adults. J. Gerontol. A. Biol. Sci. Med. Sci. 2020, 75, 1198–1205. [Google Scholar] [CrossRef]
- Mirelman, A.; Rochester, L.; Maidan, I.; Del Din, S.; Alcock, L.; Nieuwhof, F.; Rikkert, M.O.; Bloem, B.R.; Pelosin, E.; Avanzino, L.; et al. Addition of a non-immersive VR component to treadmill training to reduce fall risk in older adults (V-TIME): A randomised controlled trial. Lancet 2016, 388, 1170–1182. [Google Scholar] [CrossRef]
- Pullia, M.; Ciatto, L.; Andronaco, G.; Donato, C.; Aliotta, R.E.; Quartarone, A.; De Cola, M.C.; Bonanno, M.; Calabrò, R.S.; Cellini, R. Treadmill training plus semi-immersive VR in Parkinson’s Disease: Results from a pilot study. Brain Sci. 2023, 13, 1312. [Google Scholar] [CrossRef] [PubMed]
- Rieger, M.M.; Papegaaij, S.; Steenbrink, F.; van Dieën, J.H.; Pijnappels, M. Effects of perturbation-based treadmill training on balance performance, daily life gait, and falls in older adults: REACT randomized controlled trial. Phys. Ther. 2023, 104, pzad136. [Google Scholar] [CrossRef] [PubMed]
- Kwok, B.C.; Pua, Y.H. Effects of WiiActive exercises on fear of falling and functional outcomes in community-dwelling older adults: A randomised control trial. Age Ageing 2016, 45, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.; Kim, D. Effects of dual task activity using VR program on cognitive function, activities of daily living, and fall prevention in stroke patients. Korean Aging Friendly Ind. Asso. 2023, 15, 81–94. [Google Scholar] [CrossRef]
- Lee, S.; Shin, S. Effectiveness of VR using video gaming technology in elderly adults with diabetes mellitus. Diabetes Technol. Ther. 2013, 15, 489–496. [Google Scholar] [CrossRef]
- Morone, G.; Paolucci, T.; Luziatelli, S.; Iosa, M.; Piermattei, C.; Zangrando, F.; Paolucci, S.; Vulpiani, M.C.; Saraceni, V.M.; Baldari, C.; et al. Wii Fit is effective in women with bone loss condition associated with balance disorders: A randomized controlled trial. Aging Clin. Exp. Res. 2016, 28, 1187–1193. [Google Scholar] [CrossRef]
- Sadura-Sieklucka, T.; Czerwosz, L.T.; Kądalska, E.; Kożuchowski, M.; Księżopolska-Orłowska, K.; Targowski, T. Is balance training using biofeedback effective in the prophylaxis of falls in women over the age of 65? Brain Sci. 2023, 13, 629. [Google Scholar] [CrossRef]
- Yoo, H.N.; Chung, E.; Lee, B.H. The effects of augmented reality-based Otago exercise on balance, gait, and falls efficacy of elderly women. J. Phys. Ther. Sci. 2013, 25, 797–801. [Google Scholar] [CrossRef]
- Duque, G.; Boersma, D.; Loza-Diaz, G.; Hassan, S.; Suarez, H.; Geisinger, D.; Suriyaarachchi, P.; Sharma, A.; Demontiero, O. Effects of balance training using a virtual-reality system in older fallers. Clin. Interv. Aging 2013, 8, 257–263. [Google Scholar] [CrossRef]
- Fu, A.S.; Gao, K.L.; Tung, A.K.; Tsang, W.W.; Kwan, M.M. Effectiveness of exergaming training in reducing risk and incidence of falls in frail older adults with a history of falls. Arch. Phys. Med. Rehabil. 2015, 96, 2096–2102. [Google Scholar] [CrossRef]
- Gandolfi, M.; Geroin, C.; Dimitrova, E.; Boldrini, P.; Waldner, A.; Bonadiman, S.; Picelli, A.; Regazzo, S.; Stirbu, E.; Primon, D.; et al. VR telerehabilitation for postural instability in Parkinson’s Disease: A multicenter, single-blind, randomized, controlled trial. Biomed. Res. Int. 2017, 2017, 7962826. [Google Scholar] [CrossRef]
- Collado-Mateo, D.; Dominguez-Muñoz, F.J.; Adsuar, J.C.; Merellano-Navarro, E.; Gusi, N. Exergames for women with fibromyalgia: A randomised controlled trial to evaluate the effects on mobility skills, balance and fear of falling. PeerJ 2017, 5, e3211. [Google Scholar] [CrossRef]
- da Fonseca, E.P.; da Silva, N.M.R.; Pinto, E.B. Therapeutic effect of VR on post-stroke patients: Randomized clinical trial. J. Stroke Cerebrovasc. Dis. 2017, 26, 94–100. [Google Scholar] [CrossRef]
- Eftekharsadat, B.; Babaei-Ghazani, A.; Mohammadzadeh, M.; Talebi, M.; Eslamian, F.; Azari, E. Effect of VR based balance training in multiple sclerosis. Neurol Res. 2015, 37, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Gomes, G.C.V.; do Socorro Simões, M.; Lin, S.M.; Bacha, J.M.R.; Viveiro, L.A.P.; Varise, E.M.; Junior, N.C.; Lange, B.; Filho, W.J.; Pompeu, J.E. Feasibility, safety, acceptability, and functional outcomes of playing Nintendo Wii Fit PlusTM for frail older adults: A randomized feasibility clinical trial. Maturitas 2018, 118, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Htut, T.Z.C.; Hiengkaew, V.; Jalayondeja, C.; Vongsirinavarat, M. Effects of physical, VR based, and brain exercise on physical, cognition, and preference in older persons: A randomized controlled trial. Eur. Rev. Aging Phys. Act. 2018, 15, 10. [Google Scholar] [CrossRef]
- Hung, E.S.W.; Chen, S.C.; Chang, F.C.; Shiao, Y.; Peng, C.W.; Lai, C.H. Effects of interactive video game-based exercise on balance in diabetic patients with peripheral neuropathy: An open-level, crossover pilot study. Evid. Based Complement. Altern. Med. 2019, 2019, 4540709. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Fonkatz, I.; Frid, L.; Baransi, H.; Achiron, A. The effect of balance training on postural control in people with multiple sclerosis using the CAREN VR system: A pilot randomized controlled trial. J Neuroeng. Rehabil. 2016, 13, 15. [Google Scholar] [CrossRef]
- Khalil, H.; Al-Sharman, A.; El-Salem, K.; Alghwiri, A.A.; Al-Shorafat, D.; Khazaaleh, S.; Abu Foul, L. The development and pilot evaluation of virtual reality balance scenarios in people with multiple sclerosis (MS): A feasibility study. NeuroRehabilitation 2019, 43, 473–482. [Google Scholar] [CrossRef]
- Kim, S.H.; Cho, S.H. Benefits of virtual reality program and motor imagery training on balance and fall efficacy in isolated older adults: A randomized controlled trial. Medicina 2022, 58, 1545. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Kang, S.H. The effect of VR based exercise program on balance, gait, and falls efficacy in patients with Parkinson's disease. J. Korean Soc. Phys. Med. 2019, 14, 103–113. [Google Scholar] [CrossRef]
- Ku, J.; Kim, Y.J.; Cho, S.; Lim, T.; Lee, H.S.; Kang, Y.J. Three-dimensional augmented reality system for balance and mobility rehabilitation in the elderly: A randomized controlled trial. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 132–141. [Google Scholar] [CrossRef]
- Lai, C.L.; Tseng, S.Y.; Huang, C.H.; Pei, C.; Chi, W.M.; Hsu, L.C.; Sun, T.L. Fun and accurate static balance training to enhance fall prevention ability of aged adults: A preliminary study. Hum. Factors Ergon. Manuf. 2013, 23, 517–527. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Yang, Y.R.; Cheng, S.J.; Wu, Y.R.; Fuh, J.L.; Wang, R.Y. Virtual reality–based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson’s disease. Neurorehabil. Neural Repair. 2015, 29, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.Y.; Chen, I.H.; Wang, R.Y. Effects of Kinect-based exergaming on frailty status and physical performance in prefrail and frail elderly: A randomized controlled trial. Sci. Rep. 2019, 9, 9353. [Google Scholar] [CrossRef]
- Merriman, N.A.; Whyatt, C.; Setti, A.; Craig, C.; Newell, F.N. Successful balance training is associated with improved multisensory function in fall-prone older adults. Comput. Hum. Behav. 2015, 45, 192–203. [Google Scholar] [CrossRef]
- Novotna, K.; Janatova, M.; Hana, K.; Svestkova, O.; Preiningerova Lizrova, J.; Kubala Havrdova, E. Biofeedback based home balance training can improve balance but not gait in people with multiple sclerosis. Mult. Scler. Int. 2019, 2019, 2854130. [Google Scholar] [CrossRef]
- Phu, S.; Vogrin, S.; Al Saedi, A.; Duque, G. Balance training using VR improves balance and physical performance in older adults at high risk of falls. Clin. Interv. Aging 2019, 14, 1567–1577. [Google Scholar] [CrossRef]
- Rebêlo, F.L.; de Souza Silva, L.F.; Doná, F.; Barreto, A.S.; Quintans, J.D.S.S. Immersive VR is effective in the rehabilitation of older adults with balance disorders: A randomized clinical trial. Exp. Gerontol. 2021, 149, 111308. [Google Scholar] [CrossRef]
- Rodrigues, E.V.; Gallo, L.H.; Guimarães, A.T.B.; Melo Filho, J.; Luna, B.C.; Gomes, A.R.S. Effects of dance exergaming on depressive symptoms, fear of falling, and musculoskeletal function in fallers and nonfallers community-dwelling older women. Rejuvenation Res. 2018, 21, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, M.; Sabbagh, M.; Lin, I.; Morgan, P.; Grewal, G.S.; Mohler, J.; Coon, D.W.; Najafi, B. Sensor-based balance training with motion feedback in people with mild cognitive impairment. J. Rehabil. Res. Dev. 2016, 53, 945. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, M.; Sherrington, C.; Killington, M.; Smith, S.; Bongers, B.; Hassett, L.; Crotty, M. Video and computer-based interactive exercises are safe and improve task-specific balance in geriatric and neurological rehabilitation: A randomised trial. J. Physiother. 2016, 62, 20–28. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.R.; Kwakkel, G.; Beek, P.J.; Berendse, H.W.; Daffertshofer, A.; van Wegen, E.E. Effects of augmented visual feedback during balance training in Parkinson's disease: A pilot randomized clinical trial. Park. Relat. Disord. 2014, 20, 1352–1358. [Google Scholar] [CrossRef]
- Yeşilyaprak, S.S.; Yıldırım, M.Ş.; Tomruk, M.; Ertekin, Ö.; Algun, Z.C. Comparison of the effects of VR based balance exercises and conventional exercises on balance and fall risk in older adults living in nursing homes in Turkey. Physiother. Theory Pract. 2016, 32, 191–201. [Google Scholar] [CrossRef]
- Yilmaz, N.; Kösehasanoğulları, M. The effectiveness of virtual reality exercise games on balance functions and fear of falling in women with osteoporosis. Rheumatol. Int. 2024, 44, 1071–1076. [Google Scholar] [CrossRef]
- Zahedian-Nasab, N.; Jaberi, A.; Shirazi, F.; Kavousipor, S. Effect of VR exercises on balance and fall in elderly people with fall risk: A randomized controlled trial. BMC Geriatr. 2021, 21, 509. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Report on Falls Prevention in Older Age; WHO: Geneva, Switzerland, 2008; pp. 6–7. [Google Scholar]
- Mackenzie, L.; Byles, J.; D'Este, C. Validation of self-reported fall events in intervention studies. Clin. Rehabil. 2006, 20, 331–339. [Google Scholar] [CrossRef]
No. | Author (Year) | Design | Country | Age [Mean ± SD or Median (IQR)] (IG/CG(s)) | Disease | Sample Size (IG/CG(s)) | Single Session Time (min) Weekly Frequency; Total Duration F/U Time | Technology | Intervention | Control | Outcome Measure |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Bekkers et al. (2020) [20] | RCT | UK | 71.06 ± 6.3 70.86 ± 6.0 | Parkinson’s disease | 121 (62/59) | 45 min 3/w; 6 w F/U after 6 m | V-time | Treadmill training, VR | Treadmill training | FES-I |
2 | Collado-Mateo et al. (2017) [47] | RCT | Spain | 52.43 ± 9.83 52.58 ± 9.42 | Other (fibromyalgia) | 76 (41/35) | 60 min 2/w; 8 w | Virtual EX-FM (Microsoft Kinect R) | Warm-up + postural control and coordination + mobility skills, balance, and coordination | Usual activity | FoF |
3 | da Fonseca et al. (2017) * [48] | RCT | Brazil | 53.8 ± 6.3 50.9 ± 10.9 | Stroke | 27 (14/13) | 60 min 2/w; 10 w | Nintendo Wii | Virtual rehabilitation | Conventional training | Number of falls |
4 | de Rooij et al. (2021) * [19] | RCT | The Netherlands | 65 (57–70) 61 (53–71) | Stroke | 52 (28/24) | 30 min 2/w; 6 w F/U after 3 m | GRAIL: Motek force Link (Treadmill) | VR gait training | Non-VR gait training | FES-I |
5 | Del Din et al. (2020) * [34] | RCT | USA | [75.93 ± 6.22/ 78.03 ± 6.21/ 71.68 ± 6.43] ** | Other (healthy/MCI/PD) | 275 (109/38/128) | 40 min 3/w; 6 w F/U after 6 m | V-time | Treadmill training, VR | Treadmill training | Number of falls FRA |
6 | Duque et al. (2013) [44] | RCT | Australia | 79.3 ± 10 75.0 ± 8 | Healthy | 60 (30/30) | 30 min 2/w; 6 w | Balance rehabilitation unit | Visual–vestibular training + postural training | Usual care (Otago Exercise Program) | Number of falls FoF |
7 | Eftekharsadat et al. (2015) [49] | RCT | Iran | 33.4 ± 8.1 37.0 ± 8.3 | Multiple sclerosis | 30 (15/15) | 20 min 2/w; 12 w | Biodex Balance System | VR-based balance training | No intervention | FRI |
8 | Fu et al. (2015) * [45] | RCT | Hong Kong | 82.4 ± 3.8 82.3 ± 4.3 | Healthy | 60 (30/30) | 60 min 3/w; 6 w F/U after 12 m | Nintendo Wii Balance Board | Exergaming balance training | Conventional balance training | Number of falls |
9 | Gandolfi et al. (2017) * [46] | RCT | Italy | 67.45 ± 7.18 69.84 ± 9.41 | Parkinson’s disease | 76 (38/38) | 50 min 3/w; 7 w F/U after 12 m | Nintendo Wii Fit system | Home VR telerehabilitation balance training | Clinic sensory integration balance training | Number of falls |
10 | Gomes et al. (2018) * [50] | RCT | Brazil | 83 ± 5.87 85 ± 6.19 | Healthy | 30 (15/15) | 50 min 2/w; 7 w F/U after 30 days | Nintendo Wii Fit Plus | Nintendo Wii Fit Plus games | Booklet information and illustrations outlining the benefits and risks of physical activity | FES-I |
11 | Htut et al. (2018) [51] | RCT | Thailand | 75.8 ± 4.89 [75.9 ± 5.65 75.6 ± 5.33 76.0 ± 5.22] | Healthy | 42 (21/21) | 30 min 3/w; 8 w | Xbox 360 with Microsoft’s Kinet (Flextronics, Wistron, Celestica, Foxconn) | VR-based exercise | Physical ex Brain ex No intervention | FES-I |
12 | Hung et al. (2019) * [52] | Randomized crossover design | Taipei | IG first: 71.0 ± 1.22 CG first: 66.5 ± 2.10 | Other (diabetes mellitus) | 24 (12/12) | 30 min 3/w; 6 w | Xavix PORT (Shinsedai Co Ltd.) | IVGB balance training program | No intervention | MFES |
13 | Kalron et al. (2016) * [53] | RCT | Israel | 47.3 ± 9.6 43.9 ± 10.6 | Multiple sclerosis | 30 (15/15) | 30 min 2/w; 6 w | CAREN (Motek) | Motion platform projection | Conventional exercise program | FES-I |
14 | Kanyilmaz et al. (2022) [18] | RCT | Turkey | 70 ± 6.00 70 ± 5.00 | Other (dizziness) | 26 (13/13) | 30 min 5/w; 3 w F/U after 6 m | C-Mill (Treadmill) | VR-based vestibular rehabilitation | Vestibular rehabilitation | FES-I FRI |
15 | Kayabinar et al. (2021) * [15] | RCT | Turkey | 58.8 ± 5.03 57.06 ± 6.75 | Stroke | 30 (15/15) | 30 min 3/w; 6 w | Robot Gait VR | Preparation, gait, VR game | Preparation, gait | FES-I |
16 | Khalil et al. (2018) * [54] | RCT | Jordan | 39.88 ± 12.85 34.87 ± 8.98 | Multiple sclerosis | 32 (16/16) | 4 sets of 1 min per Ex 3/w; 6 w | Nintendo Wii Balance Board | Wii Balance Board exercise, 12 sessions + 6 sessions at home | Conventional home balance training | FES-I |
17 | Kim and Cho (2022) * [55] | RCT | Korea | 78.75 ± 10.15 80.75 ± 6.03 | Healthy | 24 (12/12) | 30 min 3/w; 6 w F/U after 8 w | Wii Fit game training | Balance training (Wii Fit games) | No intervention | FES |
18 | Kim and Kang (2019) * [56] | RCT | KOREA | 72.13 ± 7.70 76.00 ± 9.52 | Parkinson’s disease | 30 (15/15) | 30 min 5/w; 4 w | Interactive Rehabilitation and Exercise System | VR-based exercise program | Conventional physical therapy | FES |
19 | Ku et al. (2018) [57] | RCT | KOREA | 64.7 ± 7.27 65.0 ± 4.77 | Healthy | 34 (18/16) | 30 min 3/w; 4 w | Three-dimensional interactive augmented reality system (3D-ARS) using Microsoft Kinect sensor | Balloon/cave/rhythm game | Conventional physical fitness program | FRI |
20 | Kwok and Pua (2016) * [38] | RCT | Singapore | 70.5 ± 6.7 69.8 ± 7.5 | Healthy | 73 (37/36) | 60 min 1/w; 12 w F/U after 24 w | Nintendo Wii Active gaming exercise with Wii Balance Board | Wii exercise program + resistance band | Gym exercise class | Number of falls, Number of fallers, MFES |
21 | Kwon and Kim (2023) * [39] | RCT | KOREA | 69.00 ± 7.90 68.10 ± 8.33 | Stroke | 20 (10/10) | 30 min 5/w; 4 w | Theta trainer Balo + Theta-Soft | Dual task program + conventional occupational therapy | Conventional occupational therapy | FES-I |
22 | Lai et al. (2013) * [58] | Randomized crossover design | Taiwan | IG first: 70.6 ± 3.5 CG first: 74.5 ± 4.7 | Healthy | 30 (IG first 15 CG first 15) | 30 min 3/w; 6 w | Xavix Step System | IVGB exercise (Interactive Video game-based exercise) | No intervention | MFES |
23 | Lazar et al. (2023) * [32] | NRCT | India | 69.44 ± 6.66 66.33 ± 6.51 | Healthy | 44 (22/22) | 30 min 3/w; 4 w | No information | Immersive VR training | Conventional balance training | FES-I |
24 | Lee and Shin (2013) * [40] | RCT | Korea | 73.78 ± 4.77 74.29 ± 5.20 | Other (diabetes mellitus) | 55 (27/28) | 50 min 2/w; 10 w | Video gaming PlayStation 2 | Warm-up exercise VR exercise cool down exercise | Diabetes education | MFES |
25 | Levy et al. (2016) [30] | RCT | France | 72.4 ± 12.25 68.65 ± 19.05 | Healthy | 16 (9/7) | 40 min 1/w; 12 w | Eye Toy interface for PlayStation 2 | VR exposure therapy | Conventional training | FoF |
26 | Liao et al. (2015) * [59] | RCT | Taiwan | 67.3 ± 7.1 64.6 ± 8.6 | Parkinson’s disease | 24 (12/12) | 45 min 2/w; 6 w F/U after 30 days | Nintendo Wii Fit Plus gaming system and Wii Fit Balance Board | VR-based Wii Fit exercise | Traditional Ex/ education | FES-I |
27 | Liao et al. (2019) * [60] | RCT | Taiwan | 79.6 ± 8.5 84.1 ± 5.5 | Healthy | 52 (27/25) | 60 min 3/w; 12 w | Xbox Kinect (exergame) | Kinect-based game (tai-chi, resistance and aerobic, balance games) | Conventional exercise (resistance and aerobic, balance exercise) | FES-I |
28 | Merriman et al. (2015) * [61] | NRCT | Ireland | [74.90 ± 8.97/ 74.06 ± 6.66 ***] [74.33 ± 11.09/73.41 ± 7.00 ***] | Healthy | 76 (38/38) | 30 min 2/w; 5 w | Nintendo Wii Balance Board | Balance training (custom-designed games) | No intervention | FES |
29 | Mirelman et al. (2016) * [35] | RCT | Belgium Israel, Italy the Netherlands, UK | 74.2 ± 6.9 73.3 ± 6.4 | Other (healthy/MCI/PD) | 282 (146/136) | 45 min 3/w; 6 w F/U after 6 m | V-time (Microsoft Kinect) | Treadmill training, VR | Treadmill training | Number of falls, Number of fallers |
30 | Molhemi et al. (2021) * [21] | RCT | Iran | 36.8 ± 8.4 41.6 ± 8.4 | Multiple sclerosis | 39 (19/20) | 30 min 3/w; 6 w F/U after 3 m | Xbox 360 with Microsoft’s Kinet | VR balance training | Conventional balance training | Number of falls Number of fallers FES-I |
31 | Montero-Alia et al. (2019) * [31] | NRCT | Spain | 75.1 (72.6–78.7) 75.4 (72.7–78.6) | Healthy | 630 (274/356) | 30 min 2/w; 3 m F/U after 1 yr | Nintendo Wii Fit console and the WBB | Balance training (Wii Fit games) | Usual care | SF-FES-I |
32 | Morone et al. (2016) * [41] | RCT | Italy | 67.80 ± 2.98 70.05 ± 4.93 | Other (bone loss condition) | 38 | 60 min 2/w; 8 w F/U after 3 m | Wii Fit program | Exercise + Wii balance games | Rehabilitation program for preventing and treating women with postmenopausal osteoporosis | SF-FES-I |
33 | Novotna et al. (2019) * [62] | RCT | Czech | 39.39 ± 9.68 42.56 ± 10.63 | Multiple sclerosis | 39 (23/16) | 15 min 7/w; 4 w F/U after 4 w | Homebalance® system | Home-based balance training | No intervention | FES-I |
34 | Pelosin et al. (2019) [33] | RCT | Italy | 73.2 ± 3.6 71.9 ± 4.1 | Parkinson’s disease | 39 (17/22) | 45 min 3/w; 6 w | No information | Treadmill training, VR | Treadmill training | Number of falls |
35 | Phu et al. (2019) * [63] | NRCT | Australia | 79 (74–84) 79 (72–82) | Healthy | 113 (63/50) | 60 min 2/w; 8 w | Balance rehabilitation unit | VR balance training (postural training + rehabilitation) | Education regarding fall risk | FES-I |
36 | Pullia et al. (2023) * [36] | RCT | Italy | 64.5 ± 10.84 65.5 ± 10.36 | Parkinson’s disease | 20 (10/10) | 45 min 4/w; 5 w | C-Mill (Treadmill) | Innovative gait training using C-Mill | Conventional training | FES-I |
37 | Rebêlo et al. (2021) [64] | RCT | Brazil | 69.25 ± 5.27 71.41 ± 5.94 | Other (balance disorders) | 37 (20/17) | 50 min 2/w; 8 w F/U after 2 m | Oculus rift | VR-based balance training | Balance training through exercise | FES-I |
38 | Rieger et al. (2023) [37] | RCT | The Netherlands | 75.5 ± 5.40 73.9 ± 5.94 | Healthy | 70 (35/35) | 30 min 2/w; 4 w F/U after 6 m | C-Mill (Treadmill) | VR-based training | Conventional training | Number of falls, Number of fallers, FES-I |
39 | Rodrigues et al. (2018) * [65] | NRCT | Brazil | [68.9 ± 3.3/ 69.8 ± 4.3 †] [68.7 ± 4.8/ 73.6 ± 5.4 †] | Healthy | 45 (22/25) | 40 min 3/w; 12 w | Dance Central game for Xbox 360 + Kinect motion sensor | Pop dance exergaming in group sessions | No intervention | Number of fall FES-I |
40 | Sadura-Seiklucka et al. (2023) * [42] | RCT | Poland | 63 ± 8 65 ± 8 | Other (osteoarthritis) | 57 (28/29) | 30 min 5/w; 3 w F/U after 3 m | Virtual balance training on force plate (Pro-Med) | Comprehensive rehabilitation + force plate training | Comprehensive rehabilitation + conventional training | Number of falls |
41 | Schwenk et al. (2016) * [66] | RCT | USA | 77.8 ± 6.9 79.0 ± 10.4 | Other (MCI) | 20 (11/9) | 45 min 2/w; 4 w | LegSys (BioSensics LLC) | Point-to-point reaching tasks + virtual obstacle-crossing tasks | No intervention | SF-FES-I |
42 | Silva et al. (2024) [16] | RCT | Portugal | 61.73 ± 6.54 67.46 ± 8.59 | Parkinson’s disease | 30 (15/15) | 60 min 3/w; 12 w | HMD (HTC ViveTM Pro | Exergame BOX VR combination (physiotherapy + VR) | Physiotherapy | Number of falls |
43 | Stanmore et al. (2019) * [17] | cluster RCT | UK | 77.9 ± 8.9 77.8 ± 10.2 | Healthy | 92 (49/43) | 30 min 3/w; 12 w, F/U after 3 m (only fall diary) | Xbox 360 with Microsoft’s Kinet | Exergame + standard care (Otago-based exercise) | Standard care (Otago-based exercise) only | FES-I FRAT |
44 | van den Berg et al. (2016) * [67] | RCT | Australia | 78 ± 10 82 ± 13 | Other (rehabilitation patient) | 56 (27/29) | 30 min 5/w; 2 w F/U after 6 w and after 12 w | Nintendo Wii Fit, Xbox 360 with Microsoft’s Kinet, HUMAC balance system, Fitbit Zip | Video- and computer-based interactive exercise | Usual care | FES |
45 | van den Heuvel et al. (2014) * [68] | RCT | The Netherlands | 66.3 ± 6.39 68.8 ± 9.68 | Parkinson’s disease | 27 (15/12) | 60 min 2/w; 5 w F/U after 6 w | Workstation with force plate and/or inertial sensor | Visual feedback-based balance training | Conventional balance training | FES |
46 | Yesilyaprak et al. (2016) * [69] | RCT | Turkey | 70.1 ± 4.00 73.1 ± 4.50 | Healthy | 18 (7/11) | 30–60 min 3/w; 6 w F/U after 6 m | BTS NIRVABA VR Interactive System | VR-based balance exercise | Conventional balance exercise | FES-I |
47 | Yilmaz and Kösehasanoğulları (2024) * [70] | RCT | Turkey | 67 ± 10.64 68 ± 9.06 | Other (osteoporosis) | 60 (30/30) | 45 min 3/w; 12 w | Wii Fit game training | Balance training (Wii Fit games) | Home exercise group | FES |
48 | Yoo et al. (2013) * [43] | RCT | Korea | 72.90 ± 3.41 75.64 ± 5.57 | Healthy | 21 (10/11) | 60 min 3/w; 12 w | I-visor FX6011 | VR-based Otago exercise | Otago exercise | FES-I |
49 | Zahedian-Nasab et al. (2021) * [71] | RCT | Iran | 69.67 ± 7.73 72 ± 7.81 | Healthy | 60 (30/30) | 30–60 min 2/w; 6 w | Xbox Kinect (exergame) | Ski, penalty and goalkeeper, darts | Routine program | SF-FES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.-M.; Choi, H.; Jeong, H. Effects of Virtual Reality Based on Fall Prevention Intervention: A Systematic Review and Meta-Analysis. Healthcare 2025, 13, 1845. https://doi.org/10.3390/healthcare13151845
Park B-M, Choi H, Jeong H. Effects of Virtual Reality Based on Fall Prevention Intervention: A Systematic Review and Meta-Analysis. Healthcare. 2025; 13(15):1845. https://doi.org/10.3390/healthcare13151845
Chicago/Turabian StylePark, Bom-Mi, Heejung Choi, and Harim Jeong. 2025. "Effects of Virtual Reality Based on Fall Prevention Intervention: A Systematic Review and Meta-Analysis" Healthcare 13, no. 15: 1845. https://doi.org/10.3390/healthcare13151845
APA StylePark, B.-M., Choi, H., & Jeong, H. (2025). Effects of Virtual Reality Based on Fall Prevention Intervention: A Systematic Review and Meta-Analysis. Healthcare, 13(15), 1845. https://doi.org/10.3390/healthcare13151845