Sex Differences in Strength, Self-Estimation, and Pain Perception Based on Physical Activity After Rotator Cuff Repair
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Subjective Shoulder Pain
2.3. Subjective Self-Estimation
2.4. Isokinetic Shoulder Strength
2.5. Postoperative Rehabilitation
2.6. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Subjective Shoulder Pain Based on Groups
3.3. Subjective Self-Estimation Based on Groups
3.4. Isokinetic Shoulder Strength Based on Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikolaidou, O.; Migkou, S.; Karampalis, C. Suppl-1, M9: Rehabilitation after rotator cuff repair. Open Orthop. J. 2017, 11, 154. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.E. Prevalence, natural history, and nonoperative treatment of rotator cuff disease. Oper. Tech. Sports Med. 2023, 31, 150978. [Google Scholar] [CrossRef]
- Moran, T.E.; Werner, B.C. Surgery and rotator cuff disease: A review of the natural history, indications, and outcomes of nonoperative and operative treatment of rotator cuff tears. Clin. Sports Med. 2023, 42, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Dey Hazra, R.-O.; Ernat, J.J.; Rakowski, D.R.; Boykin, R.E.; Millett, P.J. The evolution of arthroscopic rotator cuff repair. Orthop. J. Sports Med. 2021, 9, 23259671211050899. [Google Scholar] [CrossRef] [PubMed]
- Uquillas, C.A.; Capogna, B.M.; Rossy, W.H.; Mahure, S.A.; Rokito, A.S. Postoperative pain control after arthroscopic rotator cuff repair. J. Shoulder Elb. Surg. 2016, 25, 1204–1213. [Google Scholar] [CrossRef]
- Mandava, N.K.; Sethi, P.M.; Routman, H.D.; Liddy, N.; Haidamous, G.; Denard, P.J. Opioid requirement after rotator cuff repair is low with a multimodal approach to pain. J. Shoulder Elb. Surg. 2021, 30, e399–e408. [Google Scholar] [CrossRef]
- Davis, W.H.; Sandler, A.B.; Scanaliato, J.P.; Dunn, J.C.; Parnes, N. Use of opioids in the early postoperative period after arthroscopic rotator cuff repair: A systematic review. Orthop. J. Sports Med. 2022, 10, 23259671221112086. [Google Scholar] [CrossRef]
- Connizzo, B.K.; Yannascoli, S.M.; Tucker, J.J.; Caro, A.C.; Riggin, C.N.; Mauck, R.L.; Soslowsky, L.J.; Steinberg, D.R.; Bernstein, J. The detrimental effects of systemic Ibuprofen delivery on tendon healing are time-dependent. Clin. Orthop. Relat. Res. 2014, 472, 2433–2439. [Google Scholar] [CrossRef]
- Yung, E.; Got, T.; Patel, N.; Brull, R.; Abdallah, F. Intra-articular infiltration analgesia for arthroscopic shoulder surgery: A systematic review and meta-analysis. Anaesthesia 2021, 76, 549–558. [Google Scholar] [CrossRef]
- Tan, L.; Cicuttini, F.M.; Fairley, J.; Romero, L.; Estee, M.; Hussain, S.M.; Urquhart, D.M. Does aerobic exercise effect pain sensitisation in individuals with musculoskeletal pain? A systematic review. BMC Musculoskelet. Disord. 2022, 23, 113. [Google Scholar] [CrossRef]
- Song, J.S.; Yamada, Y.; Kataoka, R.; Wong, V.; Spitz, R.W.; Bell, Z.W.; Loenneke, J.P. Training-induced hypoalgesia and its potential underlying mechanisms. Neurosci. Biobehav. Rev. 2022, 141, 104858. [Google Scholar] [CrossRef] [PubMed]
- Tomschi, F.; Ransmann, P.; Schmidt, A.; Hilberg, T. Exercise induced hypoalgesia after a high intensity functional training: A randomized controlled crossover study. BMC Sports Sci. Med. Rehabil. 2024, 16, 182. [Google Scholar] [CrossRef] [PubMed]
- Naugle, K.M.; Naugle, K.E.; Teegardin, M.; Kaleth, A.S. Physical activity to prevent the age-related decline of endogenous pain modulation. Exerc. Sport Sci. Rev. 2023, 51, 169–175. [Google Scholar] [CrossRef]
- Leung, A.; Gregory, N.S.; Allen, L.-A.H.; Sluka, K.A. Regular physical activity prevents chronic pain by altering resident muscle macrophage phenotype and increasing interleukin-10 in mice. Pain 2016, 157, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Littlewood, C.; Bateman, M. Rehabilitation following rotator cuff repair: A survey of current UK practice. Shoulder Elb. 2015, 7, 193–204. [Google Scholar] [CrossRef]
- Parsons, B.O.; Gruson, K.I.; Chen, D.D.; Harrison, A.K.; Gladstone, J.; Flatow, E.L. Does slower rehabilitation after arthroscopic rotator cuff repair lead to long-term stiffness? J. Shoulder Elb. Surg. 2010, 19, 1034–1039. [Google Scholar] [CrossRef]
- Sahoo, S.; Ricchetti, E.T.; Zajichek, A.; Group, C.C.S.; Evans, P.J.; Farrow, L.D.; McCoy, B.W.; Jones, M.H.; Miniaci, A.A.; Sabesan, V.J. Associations of preoperative patient mental health and sociodemographic and clinical characteristics with baseline pain, function, and satisfaction in patients undergoing rotator cuff repairs. Am. J. Sports Med. 2020, 48, 432–443. [Google Scholar] [CrossRef]
- Saccomanno, M.F.; Sircana, G.; Cazzato, G.; Donati, F.; Randelli, P.; Milano, G. Prognostic factors influencing the outcome of rotator cuff repair: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3809–3819. [Google Scholar] [CrossRef]
- Daniels, S.D.; Stewart, C.M.; Garvey, K.D.; Brook, E.M.; Higgins, L.D.; Matzkin, E.G. Sex-based differences in patient-reported outcomes after arthroscopic rotator cuff repair. Orthop. J. Sports Med. 2019, 7, 2325967119881959. [Google Scholar] [CrossRef]
- Rice, D.; Nijs, J.; Kosek, E.; Wideman, T.; Hasenbring, M.I.; Koltyn, K.; Graven-Nielsen, T.; Polli, A. Exercise-induced hypoalgesia in pain-free and chronic pain populations: State of the art and future directions. J. Pain 2019, 20, 1249–1266. [Google Scholar] [CrossRef]
- Sember, V.; Meh, K.; Sorić, M.; Starc, G.; Rocha, P.; Jurak, G. Validity and reliability of international physical activity questionnaires for adults across EU countries: Systematic review and meta analysis. Int. J. Environ. Res. Public Health 2020, 17, 7161. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Looney, D.P.; Schafer, E.A.; Chapman, C.L.; Pryor, R.R.; Potter, A.W.; Roberts, B.M.; Friedl, K.E. Reliability, biological variability, and accuracy of multi-frequency bioelectrical impedance analysis for measuring body composition components. Front. Nutr. 2024, 11, 1491931. [Google Scholar] [CrossRef] [PubMed]
- Tashjian, R.Z.; Shin, J.; Broschinsky, K.; Yeh, C.-C.; Martin, B.; Chalmers, P.N.; Greis, P.E.; Burks, R.T.; Zhang, Y. Minimal clinically important differences in the American Shoulder and Elbow Surgeons, Simple Shoulder Test, and visual analog scale pain scores after arthroscopic rotator cuff repair. J. Shoulder Elb. Surg. 2020, 29, 1406–1411. [Google Scholar] [CrossRef]
- Cunningham, G.; Lädermann, A.; Denard, P.J.; Kherad, O.; Burkhart, S.S. Correlation between American shoulder and elbow surgeons and single assessment numerical evaluation score after rotator cuff or SLAP repair. Arthrosc. J. Arthrosc. Relat. Surg. 2015, 31, 1688–1692. [Google Scholar] [CrossRef]
- Wylie, J.D.; Beckmann, J.T.; Granger, E.; Tashjian, R.Z. Functional outcomes assessment in shoulder surgery. World J. Orthop. 2014, 5, 623. [Google Scholar] [CrossRef] [PubMed]
- Gulotta, L.V.; Rodeo, S.A. Growth factors for rotator cuff repair. Clin. Sports Med. 2009, 28, 13–23. [Google Scholar] [CrossRef]
- Bigoni, M.; Gorla, M.; Guerrasio, S.; Brignoli, A.; Cossio, A.; Grillo, P.; Marinoni, E.C. Shoulder evaluation with isokinetic strength testing after arthroscopic rotator cuff repairs. J. Shoulder Elb. Surg. 2009, 18, 178–183. [Google Scholar] [CrossRef]
- Sgroi, T.A.; Cilenti, M. Rotator cuff repair: Post-operative rehabilitation concepts. Curr. Rev. Musculoskelet. Med. 2018, 11, 86–91. [Google Scholar] [CrossRef]
- Naugle, K.M.; Fillingim, R.B.; Riley, J.L., III. A meta-analytic review of the hypoalgesic effects of exercise. J. Pain 2012, 13, 1139–1150. [Google Scholar] [CrossRef]
- Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley, J.L., III. Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain 2009, 10, 447–485. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, N.; Qilleri, A.; Aprigliano, C.; Danoff, J.R. One Size Does Not Fit All: Women Experience More Pain Than Men after Total Knee Arthroplasty. J. Arthroplast. 2024, 40, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Tashjian, R.Z.; Deloach, J.; Porucznik, C.A.; Powell, A.P. Minimal clinically important differences (MCID) and patient acceptable symptomatic state (PASS) for visual analog scales (VAS) measuring pain in patients treated for rotator cuff disease. J. Shoulder Elb. Surg. 2009, 18, 927–932. [Google Scholar] [CrossRef]
- Ellingson, L.D.; Colbert, L.H.; Cook, D.B. Physical activity is related to pain sensitivity in healthy women. Med. Sci. Sports Exerc. 2012, 44, 1401–1406. [Google Scholar] [CrossRef]
- Sluka, K.A.; O’Donnell, J.M.; Danielson, J.; Rasmussen, L.A. Regular physical activity prevents development of chronic pain and activation of central neurons. J. Appl. Physiol. 2013, 114, 725–733. [Google Scholar] [CrossRef]
- Koltyn, K.F.; Brellenthin, A.G.; Cook, D.B.; Sehgal, N.; Hillard, C. Mechanisms of exercise-induced hypoalgesia. J. Pain 2014, 15, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Lim, W. Effects of a subacute high-intensity rehabilitation program in older adult inpatients following intramedullary nailing for hip fractures. J. Bodyw. Mov. Ther. 2025, 42, 1017–1024. [Google Scholar] [CrossRef]
- Vidt, M.E.; Santago, A.C., II.; Marsh, A.P.; Hegedus, E.J.; Tuohy, C.J.; Poehling, G.G.; Freehill, M.T.; Miller, M.E.; Saul, K.R. Modeling a rotator cuff tear: Individualized shoulder muscle forces influence glenohumeral joint contact force predictions. Clin. Biomech. 2018, 60, 20–29. [Google Scholar] [CrossRef]
- Wattanaprakornkul, D.; Cathers, I.; Halaki, M.; Ginn, K.A. The rotator cuff muscles have a direction specific recruitment pattern during shoulder flexion and extension exercises. J. Sci. Med. Sport 2011, 14, 376–382. [Google Scholar] [CrossRef]
- Lee, B.G.; Cho, N.S.; Rhee, Y.G. Effect of two rehabilitation protocols on range of motion and healing rates after arthroscopic rotator cuff repair: Aggressive versus limited early passive exercises. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 34–42. [Google Scholar] [CrossRef]
Period | HPA | LPA |
0–5 weeks | Initiation of AROM exercises for adjacent joints (cervical spine, elbow, wrist, and hand) | |
Emphasis on scapular stabilization (retraction and depression) | ||
6–7 weeks | Initiation of PROM exercises for the shoulder (FF, ER) | |
Emphasis on shoulder isometric strengthening exercises (FF, extension, ER, IR) | ||
8–9 weeks | Transition to AAROM exercises for the shoulder (FF, ER) | |
Table slides (FF, Scaption) | ||
10–11 weeks | Progression to AROM for the shoulder (FF, extension, ER, IR) | |
Progression from supported vertical wall slides to wall walks | ||
12–24 weeks | Advancement to pain-free full PROM, followed by a transition to full AROM | |
Integration of progressive resistance training (elastic resistance band exercise, etc.) |
Variables | HPA (n = 94) | p | LPA (n = 99) | p | ||
---|---|---|---|---|---|---|
Male (n = 48) | Female (n = 46) | Male (n = 49) | Female (n = 50) | |||
Age (year) | 59.0 ± 9.3 | 60.3 ± 9.7 | 0.610 | 60.1 ± 7.6 | 61.1 ± 2.5 | 0.361 |
Height (cm) | 169.8 ± 6.1 | 170.1 ± 3.0 | 0.743 | 154.3 ± 4.7 | 153.5 ± 3.6 | 0.511 |
Weight (kg) | 72.9 ± 3.8 | 71.9 ± 4.0 | 0.267 | 57.8 ± 8.2 | 59.6 ± 5.7 | 0.851 |
Skeletal muscle mass (kg) | 29.7 ± 3.0 | 30.0 ± 2.1 | 0.880 | 20.7 ± 3.0 | 21.2 ± 2.9 | 0.733 |
Fat mass (kg) | 24.6 ± 5.1 | 24.7 ± 2.9 | 0.546 | 19.9 ± 5.0 | 20.7 ± 3.4 | 0.619 |
BMI (kg/m2) | 25.3 ± 1.3 | 24.6 ± 1.5 | 0.138 | 24.6 ± 3.1 | 25.2 ± 2.1 | 0.619 |
Body fat percentage (%) | 33.1 ± 6.0 | 33.5 ± 3.9 | 0.240 | 33.2 ± 6.9 | 35.3 ± 5.3 | 0.409 |
Involved side, n (%) | ||||||
Right | 26 (54.2) | 24 (52.2) | 0.980 | 25 (51.0) | 27 (54.0) | 0.919 |
Left | 22 (45.8) | 22 (47.8) | 24 (49.0) | 23 (46.0) | ||
Tear size, n (%) | ||||||
Medium | 26 (54.2) | 28 (60.9) | 0.479 | 29 (59.2) | 27 (54.0) | 0.560 |
Large | 22 (45.8) | 18 (39.1) | 20 (40.8) | 23 (46.0) | ||
PA volume (MET·min/wk) | 1029.1 ± 231.3 | 401.1 ± 65.3 | <0.001 * | 1089.9 ± 258.1 | 379.6 ± 99.9 | <0.001 * |
Variables | Group | Preop | 6 wk | 12 wk | 24 wk | p |
---|---|---|---|---|---|---|
VAS, score | MHPA | 7.53 ± 0.70 | 3.86 ± 0.57 a,d,e†,‡ | 2.75 ± 0.80 b,d,f‡ | 1.30 ± 0.84 c,e,f | T: <0.001 * G: <0.001 * T×G: <0.001 * |
FHPA | 8.07 ± 0.54 | 3.97 ± 0.79 a,d,e§,# | 3.07 ± 1.07 b,d,f# | 1.27 ± 1.03 c,e,f | ||
MLPA | 7.41 ± 0.85 | 6.08 ± 1.02 a,d,e†,§ | 4.19 ± 1.53 b,d,f | 1.75 ± 1.17 c,e,f | ||
FLPA | 7.97 ± 0.79 | 6.87 ± 0.71 a,d,e‡,# | 4.77 ± 1.66 b,d,f‡,# | 2.37 ± 1.68 c,e,f |
Variables | Group | Preop | 6 wk | 12 wk | 24 wk | p |
---|---|---|---|---|---|---|
ASES, score | MHPA | 39.2 ± 3.6 | 44.5 ± 6.4 d,e†,‡ | 64.4 ± 3.5 b,d,f†,‡ | 77.8 ± 8.3 c,e,f | T: <0.001 * G: 0.005 * T×G: 0.029 * |
FHPA | 38.2 ± 9.8 | 43.4 ± 2.5 d,e§,# | 65.4 ± 8 b,d,f§,# | 78.6 ± 9.7 c,e,f | ||
MLPA | 38.9 ± 6.6 | 34.1 ± 9.8 d,e†,§ | 54.7 ± 1.8 b,d,f†,§ | 75 ± 5.2 c,e,f | ||
FLPA | 38.6 ± 6.7 | 35.2 ± 3.2 d,e‡,# | 53 ± 7.6 b,d,f‡,# | 74.5 ± 7.0 c,e.f |
Variables | Group | Preop | 12 wk | 24 wk | p |
---|---|---|---|---|---|
Extension, % | MHPA | 77.1 ± 2.5 | 82.5 ± 1.7 a,c | 96.1 ± 0.9 b,c | T: <0.001 * G: 0.396 T×G: 0.754 |
FHPA | 76.8 ± 4.7 | 81.7 ± 2.0 a,c | 94.9 ± 2.4 b,c | ||
MLPA | 77.0 ± 2.1 | 80.5 ± 5.7 a,c | 95.1 ± 1.6 b,c | ||
FLPA | 77.2 ± 2.1 | 79.8 ± 2.0 a,c | 94.6 ± 1.5 b,c | ||
Flexion, % | MHPA | 59.0 ± 4.6 | 71.0 ± 3.0 a,c†,‡ | 78.0 ± 1.9 b,c | T: <0.001 * G: 0.006 * T×G: <0.001 * |
FHPA | 58.6 ± 3.2 | 69.9 ± 2.4 a,c§,# | 77.7 ± 2.6 b,c | ||
MLPA | 58.2 ± 4.3 | 63.6 ± 2.2 a,c†,§ | 76.8 ± 2.4 b,c | ||
FLPA | 58.8 ± 4.3 | 63.3 ± 2.6 a,c‡,# | 75.9 ± 2.6 b,c | ||
Internal rotation, % | MHPA | 71.0 ± 3.5 | 78.6 ± 3.8 a,c | 87.0 ± 2.7 b,c | T: <0.001 * G: 0.486 T×G: 0.799 |
FHPA | 70.3 ± 4.6 | 78.1 ± 3.6 a,c | 85.9 ± 1.3 b,c | ||
MLPA | 71.9 ± 1.8 | 77.6 ± 2.7 a,c | 86.5 ± 2.1 b,c | ||
FLPA | 70.9 ± 3.0 | 76.8 ± 2.5 a,c | 85.4 ± 1.1 b,c | ||
External rotation, % | MHPA | 50.1 ± 3.2 | 68.1 ± 2.2 a,c†,‡ | 78.8 ± 3.5 b,c | T: <0.001 * G: 0.059 T×G: <0.001 * |
FHPA | 49.3 ± 2.9 | 67.7 ± 3.4 a,c§,# | 79.1 ± 3.9 b,c | ||
MLPA | 51.1 ± 2.4 | 60.6 ± 5.7 a,c†,§ | 78.6 ± 4.2 b,c | ||
FLPA | 49.1 ± 4.2 | 59.9 ± 3.5 a,c‡,# | 78.0 ± 5.1 b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Kim, Y.; Choi, Y.; Choi, M. Sex Differences in Strength, Self-Estimation, and Pain Perception Based on Physical Activity After Rotator Cuff Repair. Healthcare 2025, 13, 1624. https://doi.org/10.3390/healthcare13131624
Wen Z, Kim Y, Choi Y, Choi M. Sex Differences in Strength, Self-Estimation, and Pain Perception Based on Physical Activity After Rotator Cuff Repair. Healthcare. 2025; 13(13):1624. https://doi.org/10.3390/healthcare13131624
Chicago/Turabian StyleWen, Zebin, Yonghwan Kim, Yongchul Choi, and Moonyoung Choi. 2025. "Sex Differences in Strength, Self-Estimation, and Pain Perception Based on Physical Activity After Rotator Cuff Repair" Healthcare 13, no. 13: 1624. https://doi.org/10.3390/healthcare13131624
APA StyleWen, Z., Kim, Y., Choi, Y., & Choi, M. (2025). Sex Differences in Strength, Self-Estimation, and Pain Perception Based on Physical Activity After Rotator Cuff Repair. Healthcare, 13(13), 1624. https://doi.org/10.3390/healthcare13131624