Impact of Sarcopenia, Dynapenia, and Obesity on Muscle Strength and Quality in Chronic Kidney Disease Patients: A Sex-Specific Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometry and Body Composition
2.3. Biochemical Analysis
2.4. Functional Performance Test
2.5. Muscle Quality Index and Handgrip Strength Evaluation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ammirati, A.L. Chronic Kidney Disease. Rev. Assoc. Med. Bras. (1992) 2020, 66 (Suppl. 1), s03–s09. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G.; et al. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Sesso, R.C.; Lopes, A.A.; Thome, F.S.; Lugon, J.R.; Martins, C.T. Brazilian Chronic Dialysis Survey 2016. J. Bras. Nefrol. 2017, 39, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in chronic kidney disease: What have we learned so far? J. Nephrol. 2021, 34, 1347–1372. [Google Scholar] [CrossRef]
- Kooman, J.P.; Kotanko, P.; Schols, A.M.; Shiels, P.G.; Stenvinkel, P. Chronic kidney disease and premature ageing. Nat. Rev. Nephrol. 2014, 10, 732–742. [Google Scholar] [CrossRef]
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef]
- Gungor, O.; Ulu, S.; Hasbal, N.B.; Anker, S.D.; Kalantar-Zadeh, K. Effects of hormonal changes on sarcopenia in chronic kidney disease: Where are we now and what can we do? J. Cachexia Sarcopenia Muscle 2021, 12, 1380–1392. [Google Scholar] [CrossRef]
- Anker, S.D.; Morley, J.E.; von Haehling, S. Welcome to the ICD-10 code for sarcopenia. J. Cachexia Sarcopenia Muscle 2016, 7, 512–514. [Google Scholar] [CrossRef]
- Dhar, M.; Kapoor, N.; Suastika, K.; Khamseh, M.E.; Selim, S.; Kumar, V.; Raza, S.A.; Azmat, U.; Pathania, M.; Rai Mahadeb, Y.P.; et al. South Asian Working Action Group on SARCOpenia (SWAG-SARCO)—A consensus document. Osteoporos. Sarcopenia 2022, 8, 35–57. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Vogt, B.P.; Borges, M.C.C.; Goes, C.R.; Caramori, J.C.T. Handgrip strength is an independent predictor of all-cause mortality in maintenance dialysis patients. Clin. Nutr. 2016, 35, 1429–1433. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.A.; Oliveira, D.; Barbosa, S.R.; Correa, J.; Colugnati, F.A.B.; Mansur, H.N.; Fernandes, N.; Bastos, M.G. Sarcopenia in patients with chronic kidney disease not yet on dialysis: Analysis of the prevalence and associated factors. PLoS ONE 2017, 12, e0176230. [Google Scholar] [CrossRef]
- Guida, B.; Maro, M.D.; Lauro, M.D.; Lauro, T.D.; Trio, R.; Santillo, M.; Belfiore, A.; Memoli, A.; Cataldi, M. Identification of sarcopenia and dynapenia in CKD predialysis patients with EGWSOP2 criteria: An observational, cross-sectional study. Nutrition 2020, 78, 110815. [Google Scholar] [CrossRef]
- Silbiger, S.R.; Neugarten, J. The impact of gender on the progression of chronic renal disease. Am. J. Kidney Dis. 1995, 25, 515–533. [Google Scholar] [CrossRef]
- Zitzmann, M. Testosterone deficiency and chronic kidney disease. J. Clin. Transl. Endocrinol. 2024, 37, 100365. [Google Scholar] [CrossRef]
- Maric-Bilkan, C.; Manigrasso, M.B. Sex differences in hypertension: Contribution of the renin-angiotensin system. Gend. Med. 2012, 9, 287–291. [Google Scholar] [CrossRef]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.F.; Montagner, A.; Gourdy, P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef]
- Kruse, N.T.; Buzkova, P.; Barzilay, J.I.; Valderrabano, R.J.; Robbins, J.A.; Fink, H.A.; Jalal, D.I. Association of skeletal muscle mass, kidney disease and mortality in older men and women: The cardiovascular health study. Aging (Albany NY) 2020, 12, 21023–21036. [Google Scholar] [CrossRef] [PubMed]
- da Cunha Nascimento, D.; de Sousa, N.M.; de Sousa Neto, I.V.; Tibana, R.A.; de Souza, V.C.; Vieira, D.C.; Camarco, N.F.; de Oliveira, S.; de Almeida, J.A.; Navalta, J.; et al. Classification of pro-inflammatory status for interleukin-6 affects relative muscle strength in obese elderly women. Aging Clin. Exp. Res. 2015, 27, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Neto, I.V.S.; Diniz, J.S.; Alves, V.P.; Ventura Oliveira, A.R.; Barbosa, M.P.S.; da Silva Prado, C.R.; Alencar, J.A.; Vilaca, E.S.K.H.C.; Silva, C.R.; Lissemerki Ferreira, G.M.; et al. Field-Based Estimates of Muscle Quality Index Determine Timed-Up-and-Go Test Performance in Obese Older Women. Clin. Interv. Aging 2023, 18, 293–303. [Google Scholar] [CrossRef]
- Zoccali, C.; Torino, C.; Tripepi, G.; Mallamaci, F. Assessment of obesity in chronic kidney disease: What is the best measure? Curr. Opin. Nephrol. Hypertens. 2012, 21, 641–646. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Chintam, K.; Chang, A.R. Strategies to Treat Obesity in Patients with CKD. Am. J. Kidney Dis. 2021, 77, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Zoccali, C.; Ikizler, T.A. Obesity in CKD--what should nephrologists know? J. Am. Soc. Nephrol. 2013, 24, 1727–1736. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001, 79, 373–374. [Google Scholar]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Nascimento, D.D.C.; Prestes, J.; de Sousa Diniz, J.; Beal, P.R.; Alves, V.P.; Stone, W.; Beal, F.L.R. Comparison of field- and laboratory-based estimates of muscle quality index between octogenarians and young older adults: An observational study. J. Exerc. Rehabil. 2020, 16, 458–466. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy. In WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy; WHO Guidelines Approved by the Guidelines Review Committee; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- de Santana, F.S.; Nascimento Dda, C.; de Freitas, J.P.; Miranda, R.F.; Muniz, L.F.; Santos Neto, L.; da Mota, L.M.; Balsamo, S. Assessment of functional capacity in patients with rheumatoid arthritis: Implications for recommending exercise. Rev. Bras. Reumatol. 2014, 54, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Barbat-Artigas, S.; Rolland, Y.; Cesari, M.; Abellan van Kan, G.; Vellas, B.; Aubertin-Leheudre, M. Clinical relevance of different muscle strength indexes and functional impairment in women aged 75 years and older. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 811–819. [Google Scholar] [CrossRef]
- Barbat-Artigas, S.; Rolland, Y.; Vellas, B.; Aubertin-Leheudre, M. Muscle quantity is not synonymous with muscle quality. J. Am. Med. Dir. Assoc. 2013, 14, 852.e1–852.e7. [Google Scholar] [CrossRef] [PubMed]
- Barbat-Artigas, S.; Rolland, Y.; Zamboni, M.; Aubertin-Leheudre, M. How to assess functional status: A new muscle quality index. J. Nutr. Health Aging 2012, 16, 67–77. [Google Scholar] [CrossRef]
- Murai, J.; Nishizawa, H.; Otsuka, A.; Fukuda, S.; Tanaka, Y.; Nagao, H.; Sakai, Y.; Suzuki, M.; Yokota, S.; Tada, H.; et al. Low muscle quality in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovasc. Diabetol. 2018, 17, 112. [Google Scholar] [CrossRef] [PubMed]
- Straight, C.R.; Brady, A.O.; Schmidt, M.D.; Evans, E.M. Comparison of laboratory-and field-based estimates of muscle quality for predicting physical function in older women. J. Aging Res. Clin. Pract. 2013, 2, 276–279. [Google Scholar]
- Naimo, M.A.; Varanoske, A.N.; Hughes, J.M.; Pasiakos, S.M. Skeletal Muscle Quality: A Biomarker for Assessing Physical Performance Capabilities in Young Populations. Front. Physiol. 2021, 12, 706699. [Google Scholar] [CrossRef]
- Correa, H.L.; Rosa, T.D.S.; Dutra, M.T.; Sales, M.M.; Noll, M.; Deus, L.A.; Reis, A.L.; de Araujo, T.B.; Neves, R.V.P.; Gadelha, A.B. Association between dynapenic abdominal obesity and inflammatory profile in diabetic older community-dwelling patients with end-stage renal disease. Exp. Gerontol. 2021, 146, 111243. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef]
- Serdar, C.C.; Cihan, M.; Yucel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31, 010502. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. In Methodological Issues and Strategies in Clinical Research, 4th ed.; American Psychological Association: Washington, DC, USA, 2016. [Google Scholar]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip strength across the life course: Normative data from twelve British studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef]
- Bohannon, R.W. Minimal clinically important difference for grip strength: A systematic review. J. Phys. Ther. Sci. 2019, 31, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Goss-Sampson, M. Statistical Analysis in JASP: A Guide for Students; JASP: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Mayr, S.; Erdfelder, E.; Buchner, A.; Faul, F. A short tutorial of GPower. Tutor. Quant. Methods Psychol. 2007, 3, 51–59. [Google Scholar] [CrossRef]
- Beck, T.W. The importance of a priori sample size estimation in strength and conditioning research. J. Strength Cond. Res. 2013, 27, 2323–2337. [Google Scholar] [CrossRef]
- Lamarca, F.; Carrero, J.J.; Rodrigues, J.C.; Bigogno, F.G.; Fetter, R.L.; Avesani, C.M. Prevalence of sarcopenia in elderly maintenance hemodialysis patients: The impact of different diagnostic criteria. J. Nutr. Health Aging 2014, 18, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.D.; Zhang, H.Z.; Zhang, Y.; Yang, S.P.; Lin, M.; Zhang, Y.M.; Wu, J.B.; Hong, F.Y.; Chen, W.X. Relationship between chronic kidney disease and sarcopenia. Sci. Rep. 2021, 11, 20523. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Anker, S.D.; Argiles, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef]
- Maric, C.; Forsblom, C.; Thorn, L.; Waden, J.; Groop, P.H.; FinnDiane Study, G. Association between testosterone, estradiol and sex hormone binding globulin levels in men with type 1 diabetes with nephropathy. Steroids 2010, 75, 772–778. [Google Scholar] [CrossRef]
- Bataille, S.; Chauveau, P.; Fouque, D.; Aparicio, M.; Koppe, L. Myostatin and muscle atrophy during chronic kidney disease. Nephrol. Dial. Transplant. 2021, 36, 1986–1993. [Google Scholar] [CrossRef] [PubMed]
- Tay, L.; Ding, Y.Y.; Leung, B.P.; Ismail, N.H.; Yeo, A.; Yew, S.; Tay, K.S.; Tan, C.H.; Chong, M.S. Sex-specific differences in risk factors for sarcopenia amongst community-dwelling older adults. Age 2015, 37, 121. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Pahor, M.; Taaffe, D.R.; Goodpaster, B.H.; Simonsick, E.M.; Newman, A.B.; Nevitt, M.; Harris, T.B. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: The Health ABC Study. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M326–M332. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Reference Values for Knee Extension Strength Obtained by Hand-Held Dynamometry from Apparently Healthy Older Adults: A Meta-Analysis. J. Frailty Aging 2017, 6, 199–201. [Google Scholar] [CrossRef]
- Brown, J.C.; Harhay, M.O.; Harhay, M.N. The muscle quality index and mortality among males and females. Ann. Epidemiol. 2016, 26, 648–653. [Google Scholar] [CrossRef]
- Whittaker, C.F.; Miklich, M.A.; Patel, R.S.; Fink, J.C. Medication Safety Principles and Practice in CKD. Clin. J. Am. Soc. Nephrol. 2018, 13, 1738–1746. [Google Scholar] [CrossRef]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Kuh, D.; Cooper, C.; Sayer, A.A. Global variation in grip strength: A systematic review and meta-analysis of normative data. Age Ageing 2016, 45, 209–216. [Google Scholar] [CrossRef]
Variables | Male (n = 44) | Female (n = 34) | p | |
---|---|---|---|---|
Age, years | 57.77 ± 4.28 | 57.26 ± 3.79 | 0.58 | |
Body weight, kg | 73.26 ± 14.23 | 70.96 ± 13.69 | 0.47 | |
Height, m | 1.64 ± 0.08 | 1.62 ± 0.07 | 0.40 | |
BMI, kg/m2 | 26.89 ± 3.01 | 26.52 ± 2.95 | 0.59 | |
Waist circumference, cm | 96.55 ± 13.04 | 94.29 ± 11.39 | 0.42 | |
Waist/height ratio | 0.58 ± 0.05 | 0.57 ± 0.04 | 0.46 | |
Body fat, kg | 29.83 ± 8.78 | 28.62 ± 8.51 | 0.54 | |
Body fat, % | 39.93 ± 4.47 | 39.55 ± 4.46 | 0.71 | |
Fat-free-mass, kg | 43.43 ± 5.70 | 42.33 ± 5.35 | 0.40 | |
Handgrip strength, kg | 21.27 ± 5.08 | 20.88 ± 5.63 | 0.74 | |
MQIBody Weight, kg/kg | 0.30 ± 0.10 | 0.30 ± 0.10 | 0.99 | |
MQIBMI, AU | 0.80 ± 0.23 | 0.79 ± 0.24 | 0.89 | |
TUG, seconds | 17.53 ± 3.78 | 17.13 ± 3.90 | 0.64 | |
IL-6, pg/mL | 3.67 ± 0.92 | 3.34 ± 0.82 | 0.10 | |
Time of hemodialysis, weeks | 54.86 ± 9.71 | 55.82 ± 9.08 | 0.75 | |
Diseases | ꭓ2 | |||
Hypertension, n (%) | Yes | 44 (100%) | 34 (100%) | 1.00 |
No | 0 | 0 | ||
Diabetes, n (%) | Yes | 26 (59.1%) | 18 (40.9%) | 0.64 |
No | 18 (40.9%) | 16 (47.1%) | ||
Medications | ||||
Erythropoietin, n (%) | Yes | 30 (68.2%) | 30 (88.2%) | 0.057 |
No | 14 (31.8%) | 4 (11.8%) | ||
Statins, n (%) | Yes | 30 (68.2%) | 29 (85.3%) | 0.11 |
No | 14 (31.8%) | 5 (14.7%) | ||
ACEi, n (%) | Yes | 35 (79.5%) | 30 (88.2%) | 0.37 |
No | 9 (20.5%) | 4 (11.8%) | ||
Cut-off values | ||||
Dynapenia, n (%) | Yes | 39 (88.6%) | 8 (23.5%) | 0.001 |
No | 5 (11.4%) | 26 (76.5%) | ||
Sarcopenia, n (%) | Yes | 33 (75.0%) | 5 (14.7%) | 0.001 |
No | 11 (25.0%) | 29 (17.4%) |
Male (n = 44) | ||||
---|---|---|---|---|
Handgrip | Waist | BMI | Waist/height ratio | Percent body fat |
1 | −0.41 ** | −0.23 | −0.41 ** | −0.32 * |
MQIBMI | Waist | BMI | Waist/heigh ratio | Percent body fat |
1 | −0.65 ** | −0.59 ** | −0.66 ** | −0.65 ** |
Female (n = 34) | ||||
Handgrip | Waist | BMI | Waist/height ratio | Percent body fat |
1 | −0.12 | −0.09 | −0.13 | −0.20 |
MQIBMI | Waist | BMI | Waist/height ratio | Percent body fat |
1 | −0.42 * | −0.45 ** | −0.43 * | −0.52 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacci, M.; Angelotto, F.R.; Rosa, T.D.S.; De Araújo, T.B.; De Luca Corrêa, H.; De Deus, L.A.; Neves, R.V.P.; Reis, A.L.; Santos, R.L.d.; Da Silva Barbosa, J.M.; et al. Impact of Sarcopenia, Dynapenia, and Obesity on Muscle Strength and Quality in Chronic Kidney Disease Patients: A Sex-Specific Study. Healthcare 2025, 13, 1621. https://doi.org/10.3390/healthcare13131621
Bacci M, Angelotto FR, Rosa TDS, De Araújo TB, De Luca Corrêa H, De Deus LA, Neves RVP, Reis AL, Santos RLd, Da Silva Barbosa JM, et al. Impact of Sarcopenia, Dynapenia, and Obesity on Muscle Strength and Quality in Chronic Kidney Disease Patients: A Sex-Specific Study. Healthcare. 2025; 13(13):1621. https://doi.org/10.3390/healthcare13131621
Chicago/Turabian StyleBacci, Marcio, Fernanda Rico Angelotto, Thiago Dos Santos Rosa, Thaís Branquinho De Araújo, Hugo De Luca Corrêa, Lysleine Alves De Deus, Rodrigo Vanerson Passos Neves, Andrea Lucena Reis, Rafael Lavarini dos Santos, Jéssica Mycaelle Da Silva Barbosa, and et al. 2025. "Impact of Sarcopenia, Dynapenia, and Obesity on Muscle Strength and Quality in Chronic Kidney Disease Patients: A Sex-Specific Study" Healthcare 13, no. 13: 1621. https://doi.org/10.3390/healthcare13131621
APA StyleBacci, M., Angelotto, F. R., Rosa, T. D. S., De Araújo, T. B., De Luca Corrêa, H., De Deus, L. A., Neves, R. V. P., Reis, A. L., Santos, R. L. d., Da Silva Barbosa, J. M., Mestrinho, V. M. D. M. V., Tzanno-Martins, C., Stone, W. J., Neto, I. V. D. S., de Moraes, W. M. A. M., Pereira, G. B., & Prestes, J. (2025). Impact of Sarcopenia, Dynapenia, and Obesity on Muscle Strength and Quality in Chronic Kidney Disease Patients: A Sex-Specific Study. Healthcare, 13(13), 1621. https://doi.org/10.3390/healthcare13131621