Effects of Virtual Reality on Adults Diagnosed with Chronic Non-Specific Low Back Pain: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Registration
2.2. Search Strategy and Data Sources
2.3. Selection of Studies and Eligibility Criteria
2.4. Data Extraction and Quality Assessment
2.5. Deviation from the Protocol
3. Results
3.1. Study Selection
3.2. Methodological Quality
3.3. Study Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APA | Anticipatory Postural Adjustment; |
CNSLBP | Chronic non-specific low back pain. |
CPA | Compensatory Postural Adjustment; |
CPAQ-8 | Chronic Pain Acceptance Questionnaire (8-item version); |
CRP | C-Reactive Protein; |
DVPRS | Defense and Veterans Pain Rating Scale; |
EG | Experimental Group; |
GC | Control Group; |
IL | Interleukins; |
IKE | Isokinetic Exercise; |
MCE | Motor Control Exercise; |
McGill Pain Q | McGill Pain Questionnaire. |
MODI | Modified Oswestry Disability Index; |
MRI | Magnetic Resonance Imaging; |
NHP | Nottingham Health Profile; |
NPRS | Numeric Pain Rating Scale; |
ODI | Oswestry Disability Index; |
PCS | Pain Catastrophizing Scale; |
PGIC | Patient Global Impression of Change; |
PROMIS | Patient-Reported Outcomes Measurement Information System; |
PSEQ-2 | Pain Self-Efficacy Questionnaire (2-item version); |
QoL | Quality of Life; |
RMDQ | Roland Morris Disability Questionnaire; |
sEMG | Surface Electromyography; |
SF-12 | Short Form-12 Questionnaire; |
TNF-α | Tumor Necrosis Factor Alpha; |
TSK | Tampa Scale for Kinesiophobia; |
TUG | Timed Up and Go Test; |
US | Ultrasound; |
VAS | Visual Analog Scale; |
VR | Virtual Reality; |
VRT | Virtual Reality Treatment; |
6MWT | 6-Minute Walk Test; |
References
- Palacios-Ceña, D.; Alonso-Blanco, C.; Hernández-Barrera, V.; Carrasco-Garrido, P.; Jiménez-García, R.; Fernández-de-las-Peñas, C. Prevalence of neck and low back pain in community-dwelling adults in Spain: An updated population-based national study (2009/10–2011/12). Eur. Spine J. 2015, 24, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Peña, A.; Gestoso, M.; Kovacs, F.; Mufraggi, N. Escuela Española de la Espalda: Prevención y rehabilitación de las patologías mecánicas del raquis. Med. Fam.-SEMERGEN 1997, 5, 16–22. [Google Scholar]
- Paolucci, T.; Attanasi, C.; Cecchini, W.; Marazzi, A.; Capobianco, S.V.; Santilli, V. Chronic low back pain and postural rehabilitation exercise: A literature review. J. Pain Res. 2018, 12, 95–107. [Google Scholar] [CrossRef]
- Insausti Valdivia, J. [Non-specific lower back pain: In search of the origin of pain]. Reumatol. Clin. 2009, 5 (Suppl. 2), 19–26. [Google Scholar] [CrossRef] [PubMed]
- Carmona, L.; Ballina, J.; Gabriel, R.; Laffon, A.; EPISER Study Group. The burden of musculoskeletal diseases in the general population of Spain: Results from a national survey. Ann. Rheum. Dis. 2001, 60, 1040–1045. [Google Scholar] [CrossRef]
- Maas, E.T.; Ostelo, R.W.J.G.; Niemisto, L.; Jousimaa, J.; Hurri, H.; Malmivaara, A.; van Tulder, M.W. Radiofrequency denervation for chronic low back pain. Cochrane Database Syst. Rev. 2015, 2015, CD008572. [Google Scholar] [CrossRef]
- Breivik, H.; Collett, B.; Ventafridda, V.; Cohen, R.; Gallacher, D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur. J. Pain 2006, 10, 287–333. [Google Scholar] [CrossRef]
- Ruiz-Fernández, C.; Francisco, V.; Pino, J.; Mera, A.; González-Gay, M.A.; Gómez, R.; Lago, F.; Gualillo, O. Molecular Relationships among Obesity, Inflammation and Intervertebral Disc Degeneration: Are Adipokines the Common Link? Int. J. Mol. Sci. 2019, 20, 2030. [Google Scholar] [CrossRef]
- Delgado Conforme, W.A.; Abarca López, J.J.; Boada Rodríguez, L.E.; Salazar Trujillo, S.E. Lumbalgia inespecífica. Dolencia más común de lo que se cree. RECIMUNDO Rev. Cient. Investig. Conoc. 2019, 3, 3–25. [Google Scholar]
- Brumitt, J.; Matheson, J.W.; Meira, E.P. Core stabilization exercise prescription, part 2: A systematic review of motor control and general (global) exercise rehabilitation approaches for patients with low back pain. Sports Health 2013, 5, 510–513. [Google Scholar] [CrossRef]
- Halpern, M. Prevention of low back pain: Basic ergonomics in the workplace and the clinic. Bailliere’s Clin. Rheumatol. 1992, 6, 705–730. [Google Scholar] [CrossRef] [PubMed]
- Weiss, P.L.T.; Katz, N. The potential of virtual reality for rehabilitation. J. Rehabil. Res. Dev. 2004, 41, vii–x. [Google Scholar]
- Rodríguez-Almagro, D.; Achalandabaso-Ochoa, A.; Ibáñez-Vera, A.J.; Góngora-Rodríguez, J.; Rodríguez-Huguet, M. Effectiveness of Virtual Reality Therapy on Balance and Gait in the Elderly: A Systematic Review. Healthcare 2024, 12, 158. [Google Scholar] [CrossRef] [PubMed]
- Wang-Price, S.; Zafereo, J.; Couch, Z.; Brizzolara, K.; Heins, T.; Smith, L. Short-term effects of two deep dry needling techniques on pressure pain thresholds and electromyographic amplitude of the lumbosacral multifidus in patients with low back pain—A randomized clinical trial. J. Man. Manip. Ther. 2020, 28, 254–265. [Google Scholar] [CrossRef]
- Tüzün, E.H.; Gıldır, S.; Angın, E.; Tecer, B.H.; Dana, K.Ö.; Malkoç, M. Effectiveness of dry needling versus a classical physiotherapy program in patients with chronic low-back pain: A single-blind, randomized, controlled trial. J. Phys. Ther. Sci. 2017, 29, 1502–1509. [Google Scholar] [CrossRef]
- Nagpal, A.S.; Raghunandan, A.; Tata, F.; Kibler, D.; McGeary, D. Virtual Reality in the Management of Chronic Low Back Pain: A Scoping Review. Front. Pain Res. 2022, 3, 856935. [Google Scholar] [CrossRef]
- Choi, T.; Heo, S.; Choi, W.; Lee, S. A Systematic Review and Meta-Analysis of the Effectiveness of Virtual Reality-Based Rehabilitation Therapy on Reducing the Degree of Pain Experienced by Individuals with Low Back Pain. Int. J. Environ. Res. Public Health 2023, 20, 3502. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Kong, Y.; Li, H.; Hu, D.; Fu, C.; Wei, Q. Virtual Reality–Based Training in Chronic Low Back Pain: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Med. Internet Res. 2024, 26, e45406. [Google Scholar] [CrossRef]
- Kumar, V.; Vatkar, A.J.; Kataria, M.; Dhatt, S.S.; Baburaj, V. Virtual reality is effective in the management of chronic low back ache in adults: A systematic review and meta-analysis of randomized controlled trials. Eur. Spine J. 2024, 33, 474–480. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Zhou, X.; Zhan, L.; Wu, F.; Huang, Z.; Sun, Y.; Feng, Y.; Du, Q. Virtual Reality Therapy for the Management of Chronic Spinal Pain: Systematic Review and Meta-Analysis. JMIR Serious Games 2024, 12, e50089. [Google Scholar] [CrossRef]
- Opara Zupančič, M.; Šarabon, N. The Current State of Virtual Reality in the Management of Musculoskeletal Conditions and Associated Chronic Pain: Terminology, Technology, and Associations. Appl. Sci. 2025, 15, 2564. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Moseley, A.M.; Herbert, R.D.; Sherrington, C.; Maher, C.G. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro). Aust. J. Physiother. 2002, 48, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Maddox, T.; Garcia, H.; Ffrench, K.; Maddox, R.; Garcia, L.; Krishnamurthy, P.; Okhotin, D.; Sparks, C.; Oldstone, L.; Birckhead, B.; et al. In-home virtual reality program for chronic low back pain: Durability of a randomized, placebo-controlled clinical trial to 18 months post-treatment. Reg. Anesth. Pain Med. 2024, 49, 373–375. [Google Scholar] [CrossRef]
- Garcia, L.; Birckhead, B.; Krishnamurthy, P.; Mackey, I.; Sackman, J.; Salmasi, V.; Louis, R.; Castro, C.; Maddox, R.; Maddox, T.; et al. Durability of the Treatment Effects of an 8-Week Self-administered Home-Based Virtual Reality Program for Chronic Low Back Pain: 6-Month Follow-up Study of a Randomized Clinical Trial. J. Med. Internet Res. 2022, 24, e37480. [Google Scholar] [CrossRef]
- Garcia, L.M.; Birckhead, B.J.; Krishnamurthy, P.; Mackey, I.; Sackman, J.; Salmasi, V.; Louis, R.; Maddox, T.; Darnall, B.D. Three-Month Follow-Up Results of a Double-Blind, Randomized Placebo-Controlled Trial of 8-Week Self-Administered At-Home Behavioral Skills-Based Virtual Reality (VR) for Chronic Low Back Pain. J. Pain 2022, 23, 822–840. [Google Scholar] [CrossRef]
- Nambi, G.; Alghadier, M.; Kashoo, F.Z.; Aldhafian, O.R.; Nwihadh, N.A.; Saleh, A.K.; Omar, M.A.; Hassan, T.G.T.; Ibrahim, M.N.A.; El Behairy, H.F.; et al. Effects of Virtual Reality Exercises versus Isokinetic Exercises in comparison with Conventional Exercises on the Imaging Findings and Inflammatory Biomarker Changes in Soccer Players with Non-Specific Low Back Pain: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 20, 524. [Google Scholar] [CrossRef]
- Nambi, G.; Abdelbasset, W.K.; Alqahatani, B.A. Radiological (Magnetic Resonance Image and Ultrasound) and biochemical effects of virtual reality training on balance training in football players with chronic low back pain: A randomized controlled study. J. Back Musculoskelet. Rehabil. 2021, 34, 269–277. [Google Scholar] [CrossRef]
- Nambi, G.; Abdelbasset, W.K.; Elsayed, S.H.; Alrawaili, S.M.; Abodonya, A.M.; Saleh, A.K.; Elnegamy, T.E. Comparative Effects of Isokinetic Training and Virtual Reality Training on Sports Performances in University Football Players with Chronic Low Back Pain-Randomized Controlled Study. Evid. Based Complement. Altern. Med. 2020, 2020, 2981273. [Google Scholar] [CrossRef]
- Li, Z.; Yu, Q.; Luo, H.; Liang, W.; Li, X.; Ge, L.; Zhang, S.; Li, L.; Wang, C. The Effect of Virtual Reality Training on Anticipatory Postural Adjustments in Patients with Chronic Nonspecific Low Back Pain: A Preliminary Study. Neural Plast. 2021, 2021, 9975862. [Google Scholar] [CrossRef]
- Yilmaz Yelvar, G.D.; Çırak, Y.; Dalkılınç, M.; Parlak Demir, Y.; Guner, Z.; Boydak, A. Is physiotherapy integrated virtual walking effective on pain, function, and kinesiophobia in patients with non-specific low-back pain? Randomised controlled trial. Eur. Spine J. 2017, 26, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Nambi, G.; Abdelbasset, W.K.; Alrawaili, S.M.; Alsubaie, S.F.; Abodonya, A.M.; Saleh, A.K. Virtual reality or isokinetic training; its effect on pain, kinesiophobia and serum stress hormones in chronic low back pain: A randomized controlled trial. Technol. Health Care 2021, 29, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.M.; Birckhead, B.J.; Krishnamurthy, P.; Sackman, J.; Mackey, I.G.; Louis, R.G.; Salmasi, V.; Maddox, T.; Darnall, B.D. An 8-Week Self-Administered At-Home Behavioral Skills-Based Virtual Reality Program for Chronic Low Back Pain: Double-Blind, Randomized, Placebo-Controlled Trial Conducted During COVID-19. J. Med. Internet Res. 2021, 23, e26292. [Google Scholar] [CrossRef]
- Groenveld, T.D.; Smits, M.L.; Knoop, J.; Kallewaard, J.W.; Staal, J.B.; de Vries, M.; van Goor, H. Effect of a Behavioral Therapy-Based Virtual Reality Application on Quality of Life in Chronic Low Back Pain. Clin. J. Pain 2023, 39, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.W.; Ahmad, A.; Mohseni Bandpei, M.A.; Gilani, S.A.; Hanif, A.; Waqas, M.S. Effects of virtual reality exercises and routine physical therapy on pain intensity and functional disability in patients with chronic low back pain. J. Pak. Med. Assoc. 2022, 72, 413–417. [Google Scholar] [CrossRef]
- Matheve, T.; Bogaerts, K.; Timmermans, A. Virtual reality distraction induces hypoalgesia in patients with chronic low back pain: A randomized controlled trial. J. Neuroeng. Rehabil. 2020, 17, 55. [Google Scholar] [CrossRef]
- Thomas, J.S.; France, C.R.; Applegate, M.E.; Leitkam, S.T.; Walkowski, S. Feasibility and Safety of a Virtual Reality Dodgeball Intervention for Chronic Low Back Pain: A Randomized Clinical Trial. J. Pain 2016, 17, 1302–1317. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef]
- Hung, L.; Mann, J.; Wallsworth, C.; Upreti, M.; Kan, W.; Temirova, A.; Wong, K.L.Y.; Ren, H.; To-Miles, F.; Wong, J.; et al. Facilitators and Barriers to Using Virtual Reality and its Impact on Social Engagement in Aged Care Settings: A Scoping Review. Gerontol. Geriatr. Med. 2023, 9, 23337214231166356. [Google Scholar] [CrossRef]
- Jo, H.J.; Song, A.Y.; Lee, K.J.; Lee, D.C.; Kim, Y.H.; Sung, P.S. A kinematic analysis of relative stability of the lower extremities between subjects with and without chronic low back pain. Eur. Spine J. 2011, 20, 1297–1303. [Google Scholar] [CrossRef]
- Raza, S.; Awan, W.A.; Ghauri, M.W.; Mahmood, T.; Abbas, S. Effectiveness of spinal stabilization exercises with and without stretching of Latissimus dorsi Muscle in chronic mechanical low back pain. Rawal Med. J. 2020, 45, 857–862. [Google Scholar]
- Ahern, M.M.; Dean, L.V.; Stoddard, C.C.; Agrawal, A.; Kim, K.; Cook, C.E.; Garcia, A.N. The Effectiveness of Virtual Reality in Patients With Spinal Pain: A Systematic Review and Meta-Analysis. Pain Pract. 2020, 20, 656–675. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, J.; Yin, X.; Li, H. Effect of virtual reality technology as intervention for people with kinesiophobia: A meta-analysis of randomised controlled trials. J. Clin. Nurs. 2023, 32, 3074–3086. [Google Scholar] [CrossRef] [PubMed]
- Tabak, M.; Cabrita, M.; Schüler, T.; Hörst, D.; Heuven, R.; Kinast, B.; Thomas, A. ‘Dinner is ready!’: Virtual Reality Assisted Training for Chronic Pain Rehabilitation. In CHI PLAY ’17 Extended Abstracts: Extended Abstracts Publication of the Annual Symposium on Computer-Human Interaction in Play; Association for Computing Machinery: New York, NY, USA, 2017; pp. 283–289. [Google Scholar] [CrossRef]
Author (Year) | Sample | Intervention | Duration | Variable | Instruments | Results |
---|---|---|---|---|---|---|
Maddox et al. (2024) [24] | EG VRT = 94, CG = 94 | VRT | 8 weeks | Pain, Physical Function, QoL | DVPRS, PROMIS | Significant pain reduction (p < 0.001). Improved physical function and QoL (effects up to 18 months). |
Groenveld et al. (2023) [34] | EG VRT = 20, CG = 21 | VRT | 4 weeks | Pain, QoL | VAS, SF-12 | Significant reduction in daily pain (p < 0.001). No significant changes in QoL. |
Afzal et al. (2022) [35] | EG VRT = 42, GP = 42 | VRT, Physiotherapy | 4 weeks (12 sessions) | Pain, Disability | VAS, MODI | Significant pain and disability reduction (p < 0.05). Greater effects in RV. |
García et al. (2022) [25] | EG VRT = 94, CG = 94 | VRT | 8 weeks | Pain, Physical Function, Sleep, Mood, Stress | DVPRS, DVPRS-II, PROMIS | Pain reduction (p = 0.001, sustained 6 months). Less interference of pain with activity, mood, and sleep (p < 0.001). Lower stress levels (p = 0.001). |
García et al. (2022) [26] | EG VRT = 94, CG = 94 | VRT | 3 weeks | Pain, Physical Function, Sleep, Mood, Stress | DVPRS, DVPRS-II, PROMIS | Pain intensity lower in VRT (p = 0.0017). Significant time × treatment interaction (p = 0.0011). |
Nambi et al. (2022) [27] | EG VRT = 19, EG IKE = 19, CG = 20 | VRT, IKE, Exercise | 4 weeks | Pain, Muscle CSA, Biomarkers | VAS, MRI, US, Blood Test | Pain reduction (p = 0.001), greatest in IKE. Increased muscle CSA, highest in IKE. Significant biomarker changes, best in VRT. |
García et al. (2021) [33] | EG VRT = 89, CG = 90 | VRT | 8 weeks | Pain, Physical Function, Sleep, Mood, Stress | DVPRS, DVPRS-II, PGIC, PROMIS, PCS, PSEQ-2, CPAQ-8 | Greater pain reduction in VRT (p < 0.001). Improved physical function and sleep (p < 0.001). |
Li et al. (2021) [30] | EG VRT = 11, EG MCE = 12, CG = 11 | MCE, VRT | 2 weeks | Pain, Disability, Muscle Activation | VAS, ODI, sEMG | Increased muscle activation (p < 0.05). No significant differences in disability. |
Nambi et al. (2021) [32] | EG VRT = 20, EG IKT = 20, CG = 20 | VRT, IKT | 4 weeks | Pain, Kinesiophobia, Stress Hormones | VAS, TSK-17, Blood Test | Pain reduction (p < 0.001), greater in VRT and IKT. Reduced kinesiophobia and stress hormones, highest in VRT. |
Matheve et al. (2020) [36] | EG VRT = 42, CG = 42 | VRT + Incline Exercises | 1 session (2 × 2) | Pain, Disability, Catastrophizing, Kinesiophobia | NPRS, RMDQ, PCS, TSK | Lower pain intensity, pain catastrophizing, and kinesiophobia (p < 0.02). Greater effects in VRT. |
Nambi et al. (2020) [29] | EG IKT = 15, EG VRT = 15, CG = 15 | IKT, VRT | 4 weeks | Pain, Player Welfare, Perfomance | VAS, Player Welfare Q, Sprint and Jump Tests | Pain reduction (p ≤ 0.001), greatest in VRT. Improved sprint and jump performance. |
Nambi et al. (2020) [28] | EG VRT = 12 EG CPR =12 CG = 12 | VRT | 4 weeks | Muscle CSA, Biomarkers | MRI, US, Blood Test | Increased muscle CSA (p < 0.01). Significant biomarker changes, best in VRT. |
Yilmaz Yelvar et al. (2017) [31] | EG = 22, CG = 22 | VRT | 2 weeks | Pain, Kinesiophobia, Disability, QoL, Function | VAS, TKS, ODI, NHP, TUG, 6MWT | Significant improvements in pain, kinesiophobia, and function (p < 0.01). No significant changes in ODI and NHP. |
Thomas et al. (2016) [37] | EG = 26, CG = 26 | VRT | Multiple sessions | Pain, Disability, Lumbar Flexion | McGill Pain Q, RMDQ | Significant pain reduction (p < 0.01). No changes in disability or lumbar flexion. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-de-la-Banda-García, R.; Cruz-Díaz, D.; García-Vázquez, J.F.; Martínez-Lentisco, M.d.M.; León-Morillas, F. Effects of Virtual Reality on Adults Diagnosed with Chronic Non-Specific Low Back Pain: A Systematic Review. Healthcare 2025, 13, 1328. https://doi.org/10.3390/healthcare13111328
García-de-la-Banda-García R, Cruz-Díaz D, García-Vázquez JF, Martínez-Lentisco MdM, León-Morillas F. Effects of Virtual Reality on Adults Diagnosed with Chronic Non-Specific Low Back Pain: A Systematic Review. Healthcare. 2025; 13(11):1328. https://doi.org/10.3390/healthcare13111328
Chicago/Turabian StyleGarcía-de-la-Banda-García, Rocío, David Cruz-Díaz, Juan Francisco García-Vázquez, María del Mar Martínez-Lentisco, and Felipe León-Morillas. 2025. "Effects of Virtual Reality on Adults Diagnosed with Chronic Non-Specific Low Back Pain: A Systematic Review" Healthcare 13, no. 11: 1328. https://doi.org/10.3390/healthcare13111328
APA StyleGarcía-de-la-Banda-García, R., Cruz-Díaz, D., García-Vázquez, J. F., Martínez-Lentisco, M. d. M., & León-Morillas, F. (2025). Effects of Virtual Reality on Adults Diagnosed with Chronic Non-Specific Low Back Pain: A Systematic Review. Healthcare, 13(11), 1328. https://doi.org/10.3390/healthcare13111328