Telerehabilitation Is a Valid Option for Total Knee Arthroplasty Patients: A Retrospective Pilot Study Based on Our Experience during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
3. Outcome Measures
4. Statistics
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Knee Arthroplasty Rehabilitation Protocol: 12-Week Step-by-Step Guide (Instructions for the Patients)
- Pain Management: Use prescribed pain medications as needed to manage postoperative pain.
- Cryotherapy: Apply ice packs to the surgical area for 15–20 min several times a day to reduce swelling.
- Weight-Bearing: Start with partial weight-bearing as advised by your surgeon and gradually progress to full weight-bearing as tolerated.
- Range of Motion (ROM) Exercises: Perform gentle passive and active-assisted knee flexion and extension exercises to regain knee mobility.
- Ankle Pumps and Quad Sets: Practice ankle pumps and quad sets to maintain circulation and prevent muscle atrophy.
- Weight-Bearing Activities: Gradually increase weight-bearing activities, such as walking with a walker or crutches, under the guidance of your physical therapist.
- Strengthening Exercises: Start with gentle quadriceps, hamstring, and gluteal muscle strengthening exercises to improve knee stability.
- Straight Leg Raises: Begin straight leg raises to further strengthen the quadriceps muscle.
- Stationary Bike: Incorporate stationary biking with low resistance to improve knee flexion and overall cardiovascular endurance.
- Balance and Proprioception: Practice balance exercises to improve stability and proprioception.
- Progressive Weight-Bearing: Continue to progress with weight-bearing activities and gradually reduce reliance on walking aids.
- Advanced Strengthening: Introduce more challenging strengthening exercises, such as step-ups, leg presses, and lunges.
- Mini Squats: Initiate mini squats to enhance knee function and range of motion.
- Gait Training: Work on normalizing gait patterns and improving walking mechanics.
- Plyometric Exercises: Incorporate low-impact plyometric exercises, like jumping on a mini-trampoline, to improve dynamic knee stability.
- Functional Activities: Focus on functional exercises that mimic daily activities, such as stairs climbing, squatting, and getting in/out of a chair.
- Balance and Coordination: Engage in more challenging balance and coordination exercises to improve overall lower limb function.
- Endurance Training: Increase the intensity and duration of stationary biking or other low-impact cardiovascular exercises.
- Return-to-Activity Preparation: Gradually integrate activities specific to your daily routines and hobbies.
References
- Cerbo, M.; Fella, D.; Jefferson, T.; Migliore, A.; Paone, S.; Perrini, M.R.; Velardi, L. Prostheses for Primary Total Knee Replacement in Italy; Agenas: Rome, Italy, 2009; Available online: http://www.agenas.it/aree-tematiche/hta-health-technology-assessment/attivita-hta/report-hta (accessed on 1 July 2015).
- Romanini, E.; Decarolis, F.; Luzi, I.; Zanoli, G.; Venosa, M.; Laricchiuta, P.; Carrani, E.; Torre, M. Total knee arthroplasty in Italy: Reflections from the last fifteen years and projections for the next thirty. Int. Orthop. 2019, 43, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Toussaint, R.; Kohlmann, T. Total hip and knee arthroplasty: Results of outpatient orthopedic rehabilitation. Orthopade 2015, 44, 203–211. [Google Scholar] [PubMed]
- Joice, M.G.; Bhowmick, S.; Amanatullah, D.F. Perioperative physiotherapy in total knee arthroplasty. Orthopedics 2017, 40, e765–e773. [Google Scholar] [CrossRef]
- Goh, S.L.; Persson, M.S.M.; Stocks, J.; Hou, Y.; Lin, J.; Hall, M.C.; Doherty, M.; Zhang, W. Efficacy and potential determinants of exercise therapy in knee and hiposteoarthritis: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Di Monaco, M.; Castiglioni, C. Which type of exercise therapy is effective after hip arthroplasty? A systematic review of randomized controlled trials. Eur. J. Phys. Rehabil. Med. 2013, 49, 893–907. [Google Scholar]
- Roos, E.M.; Roos, H.P.; Lohmander, L.S.; Ekdahl, C.; Beynnon, B.D. Knee Injury and Osteoarthritis Outcome Score (KOOS): Development of a self-administered outcome measure. J. Orthop. Sports Phys. Ther. 1998, 28, 88–96. [Google Scholar] [CrossRef]
- Coulter, E.H.; McLean, A.N.; Hasler, J.P.; Allan, D.B.; McFadyen, A.; Paul, L. The effectiveness and satisfaction of web-based physiotherapy in people with spinal cord injury: A pilot randomised controlled trial. Spinal Cord. 2016, 55, 383–389. [Google Scholar] [CrossRef]
- Lingard, E.A.; Berven, S.; Katz, J.N.; Kinemax Outcomes Group. Management and care of patients undergoing total knee arthroplasty: Variations across different health care settings. Arthritis Care Res. 2000, 13, 129–136. [Google Scholar] [CrossRef]
- Rosen Michael, J. ‘Telerehabilitation’. NeuroRehabilitation 1999, 12, 11–26. [Google Scholar] [CrossRef]
- Seron, P.; Oliveros, M.J.; Gutierrez-Arias, R.; Fuentes-Aspe, R.; Torres-Castro, R.C.; Merino-Osorio, C.; Nahuelhual, P.; Inostroza, J.; Jalil, Y.; Solano, R.; et al. Effectiveness of Telerehabilitation in Physical Therapy: A Rapid Overview. Phys. Ther. 2021, 101, pzab053. [Google Scholar] [CrossRef]
- Salgueiro, C.; Urrútia, G.; Cabanas-Valdés, R. Influence of Core-Stability Exercises Guided by a Telerehabilitation App on Trunk Performance, Balance and Gait Performance in Chronic Stroke Survivors: A Preliminary Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 5689. [Google Scholar] [CrossRef] [PubMed]
- Hailey, D.; Roine, R.; Ohinmaa, A.; Dennett, L. Evidence on the Effectiveness of Telerehabilitation Applications; Institute of Health Economics and Finnish Office for Health Technology Assessment: Edmonton, AB, Canada; Helsinki, Finland, 2010. [Google Scholar]
- Russell, T.G. Telerehabilitation: A coming of age. Aust. J. Physiother. 2009, 55, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Foducey, P.; Smith, L.; Scheideman-Miller, C. Organisational design and implementation of a telerehabilitation system in Oklahoma. Int. J. Technol. Manag. 2004, 6, 56–75. [Google Scholar] [CrossRef]
- Zheng, J.; Hou, M.; Liu, L.; Wang, X. Knowledge Structure and Emerging Trends of Telerehabilitation in Recent 20 Years: A Bibliometric Analysis via CiteSpace. Front. Public Health 2022, 10, 904855. [Google Scholar] [CrossRef]
- Government of Italy. Decree of the President of the Council of Ministers. 11 March 2020. Available online: https://www.gazzettau_ciale.it/eli/id/2020/03/11/20A01605/sg%09 (accessed on 30 May 2020).
- Government of Italy. Decree of the President of the Council of Ministers. 10 April 2020. Available online: https://www.gazzettau_ciale.it/eli/id/2020/04/11/20A02179/sg (accessed on 30 May 2020).
- Government of Italy. Decree of the President of the Council of Ministers. 9 March 2020. Available online: https://www.gazzettau_ciale.it/eli/id/2020/03/09/20A01558/sg (accessed on 30 May 2020).
- Podsiadlo, D.; Richardson, S. The timed “up & go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [PubMed]
- Mahomed, N.; Gandhi, R.; Daltroy, L.; Katz, J.N. The self-administered patient satisfaction scale for primary hip and knee arthroplasty. Arthritis 2011, 2011, 591253. [Google Scholar] [CrossRef]
- Dawson, J.; Fitzpatrick, R.; Murray, D.; Carr, A. Questionnaire on the perceptions of patients about total knee replacement surgery. J. Bone Jt. Surg. 1998, 80-B, 63–69. [Google Scholar] [CrossRef]
- Padua, R.; Bondi, R.; Ceccarelli, E.; Bondi, L.; Romanini, E.; Zanoli, G.; Campi, S. Italian version of the International Knee Documentation Committee Subjective Knee Form: Cross-cultural adaptation and validation. Arthroscopy 2004, 20, 819–823. [Google Scholar] [CrossRef]
- Monticone, M.; Ferrante, S.; Salvaderi, S.; Rocca, B.; Totti, F.; Foti, C.; Roi, G.S. Development of the Italian version of the knee injury and osteoarthritis outcome score for patients with knee injuries: Cross-cultural adaptation, dimensionality, reliability, and validity. Osteoarthr. Cartil. 2012, 20, 330–335. [Google Scholar] [CrossRef]
- Russell, T.G. Physical rehabilitation using telemedicine. J. Telemed. Telecare 2007, 13, 217–220. [Google Scholar] [CrossRef]
- Rogante, M.; Grigioni, M.; Cordella, D.; Giacomozzi, C. Ten years of telerehabilitation: A literature overview of technologies and clinical applications. NeuroRehabilitation 2010, 27, 287–304. [Google Scholar] [CrossRef]
- Tousignant, M.; Moffet, H.; Boissy, P.; Corriveau, H.; Cabana, F.; Marquis, F. A randomized controlled trial of home telerehabilitation for post-knee arthroplasty. J. Telemed. Telecare 2011, 17, 195–198. [Google Scholar] [CrossRef]
- Theodoros, D.; Russell, T. Telerehabilitation: Current perspectives. Stud. Health Technol. Inform. 2008, 131, 191–209. [Google Scholar] [PubMed]
- Pineau, G.; Moqadem, K.; St-Hilaire, C.; Levac, E.; Hamel, B. Télésanté: Lignes Directrices Cliniques et Normes Technologiques en Téléréadpatation; Agences des Technologies et des Modes D’Intervention en Santé; Gouvernement du Québec: Québec, QC, Canada, 2006; Available online: http://www.inesss.qc.ca/fileadmin/doc/AETMIS/Rapports/Telesante/ETMIS2006_Vol2_No3.pdf (accessed on 28 August 2013).
- Simpson, L.A.; Miller, W.C.; Eng, J.J. Effect of stroke on fall rate, location and predictors: A prospective comparison of older adults with and without stroke. PLoS ONE 2011, 6, e19431. [Google Scholar] [CrossRef] [PubMed]
- Johansson, T.; Wild, C. Telerehabilitation in stroke care—A systematic review. J. Telemed. Telecare 2011, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kairy, D.; Lehoux, P.; Vincent, C.; Visintin, M. A systematic review of clinical outcomes, clinical process, healthcare utilization and costs associated with telerehabilitation. Disabil. Rehabil. 2009, 31, 427–447. [Google Scholar] [CrossRef] [PubMed]
- Broens, T.H.; Huis in’t Veld, R.M.; Vollenbroek-Hutten, M.M.; Hermens, H.J.; van Halteren, A.T.; Nieuwenhuis, L.J. Determinants of successful telemedicine implementations: A literature study. J. Telemed. Telecare 2007, 13, 303–309. [Google Scholar] [CrossRef]
- Ministero della Salute. Linee di Indirizzo Nazionali Sulla Telemedicina; Ministero della Salute: Rome, Italy, 2012. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_2129_allegato.pdf (accessed on 1 July 2015).
- Lee, A.C. COVID-19 and the advancement of digital physical therapist practice and telehealth. Phys. Ther. 2020, 100, 1054–1057. [Google Scholar] [CrossRef]
- Nelson, M.; Russell, T.; Crossley, K.; Bourke, M.; McPhail, S. Cost-effectiveness of telerehabilitation versus traditional care after total hip replacement: A trial-based economic evaluation. J. Telemed. Telecare 2021, 27, 359–366. [Google Scholar] [CrossRef]
- Piron, L.; Tonin, P.; Trivello, E.; Battistin, L.; Dam, M. Motor tele-rehabilitation in post-stroke patients. Med. Inform. Internet Med. 2004, 29, 119–125. [Google Scholar] [CrossRef]
- Piron, L.; Turolla, A.; Tonin, P.; Piccione, F.; Lain, L.; Dam, M. Satisfaction with care in post-stroke patients undergoing a telerehabilitation programme at home. J. Telemed. Telecare 2008, 14, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.A.; Kosmalla, F.; Landgraeber, S. Digitale Hilfsmittel in der muskuloskelettalen Rehabilitation [Digital tools in musculoskeletal rehabilitation]. Orthopadie 2023, 52, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Russell, T.G.; Buttrum, P.; Wootton, R.; Jull, G.A. Internet-based outpatient telerehabilitation for patients following total knee arthroplasty: A randomized controlled trial. J. Bone Jt. Surg. Am. 2011, 93, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Xiang, J.; Gao, X.; Guo, K.; Liu, B. The comparison of telerehabilitation and face-to-face rehabilitation after total knee arthroplasty: A systematic review and meta-analysis. J. Telemed. Telecare 2016, 24, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lee, R.L.T.; Hunter, S.; Chan, S.W. The effectiveness of internet-based telerehabilitation among patients after total joint arthroplasty: An integrative review. Int. J. Nurs. Stud. 2021, 115, 103845. [Google Scholar] [CrossRef]
- Höher, J.; Lischke, B.; Petersen, W.; Mengis, N.; Niederer, D.; Stein, T.; Stoffels, T.; Prill, R.; Schmidt-Lucke, C. Sensor-based telerehabilitation system increases patient adherence after knee surgery. PLoS Digit. Health 2023, 2, e0000175. [Google Scholar] [CrossRef]
- Shim, G.Y.; Kim, E.H.; Lee, S.J.; Chang, C.B.; Lee, Y.S.; Lee, J.I.; Hwang, J.H.; Lim, J.Y. Postoperative rehabilitation using a digital healthcare system in patients with total knee arthroplasty: A randomized controlled trial. Arch. Orthop. Trauma Surg. 2023, 2. [Google Scholar] [CrossRef]
- Brigo, E.; Rintala, A.; Kossi, O.; Verwaest, F.; Vanhoof, O.; Feys, P.; Bonnechère, B. Using Telehealth to Guarantee the Continuity of Rehabilitation during the COVID-19 Pandemic: A Systematic Review. Int. J. Environ. Res. Public. Health 2022, 19, 10325. [Google Scholar] [CrossRef]
- Gazendam, A.; Zhu, M.; Chang, Y.; Phillips, S.; Bhandari, M. Virtual reality rehabilitation following total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. Knee Surg. Sport. Traumatol. Arthrosc. 2022, 30, 2548–2555. [Google Scholar] [CrossRef]
- Phuphanich, M.E.; Sinha, K.R.; Truong, M.; Pham, Q.G. Telemedicine for Musculoskeletal Rehabilitation and Orthopedic Postoperative Rehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2021, 32, 319–353. [Google Scholar] [CrossRef]
- Lal, H.; Mohanta, S.; Kumar, J.; Patralekh, M.K.; Lall, L.; Katariya, H.; Arya, R.K. Telemedicine-Rehabilitation and Virtual Reality in Orthopaedics and Sports Medicine. Indian J. Orthop. 2022, 57, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, S.; Lo, J.; Sithamparanathan, G.; Nowrouzi-Kia, B. The era of technology in healthcare: An evaluation of telerehabilitation on patient outcomes-a systematic review and meta-analysis protocol. Syst. Rev. 2023, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.; Loeb, A.E.; Amin, R.M.; Golladay, G.J.; Levin, A.S.; Thakkar, S.C. Establishing telemedicine in an academic total joint arthroplasty practice: Needs and opportunities highlighted by the COVID-19 pandemic. Arthroplast. Today 2020, 6, 617–622. [Google Scholar] [CrossRef]
- Petersen, W.; Karpinski, K.; Backhaus, L.; Bierke, S.; Häner, M. A systematic review about telemedicine in orthopedics. Arch. Orthop. Trauma Surg. 2021, 141, 1731–1739. [Google Scholar] [CrossRef]
- Pastora-Bernal, J.M.; Martin-Valero, R.; Baron-Lopez, F.J.; Estebanez-Perez, M.J. Evidence of benefit of telerehabitation after orthopedic surgery: A systematic review. J. Med. Internet Res. 2017, 19, e142. [Google Scholar] [CrossRef]
- Agostini, M.; Moja, L.; Banzi, R.; Pistotti, V.; Tonin, P.; Venneri, A.; Turolla, A. Telerehabilitation and recovery of motor function: A systematic review and meta-analysis. J. Telemed. Telecare 2015, 21, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Piqueras, M.; Marco, E.; Coll, M.; Escalada, F.; Ballester, A.; Cinca, C.; Belmonte, R.; Muniesa, J. Effectiveness of an interactive virtual telerehabilitation system in patients after total knee arthoplasty: A randomized controlled trial. J. Rehabil. Med. 2013, 45, 392–396. [Google Scholar] [CrossRef]
- Kalron, A.; Tawil, H.; Peleg-Shani, S.; Vatine, J.J. Effect of telerehabilitation on mobility in people after hip surgery: A pilot feasibility study. Int. J. Rehabil. Res. 2018, 41, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Dias Correia, F.; Nogueira, A.; Magalhães, I.; Guimarães, J.; Moreira, M.; Barradas, I.; Molinos, M.; Teixeira, L.; Pires, J.; Seabra, R.; et al. Digital versus conventional rehabilitation after total hip arthroplasty: A single-center, parallel-group pilot study. JMIR Rehabil. Assist. Technol. 2019, 6, e14523. [Google Scholar] [CrossRef]
- LeBrun, D.G.; Martino, B.; Biehl, E.; Fisher, C.M.; Gonzalez Della Valle, A.; Ast, M.P. Telerehabilitation has similar clinical and patient-reported outcomes compared to traditional rehabilitation following total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 4098–4103. [Google Scholar] [CrossRef]
- Summers, S.H.; Nunley, R.M.; Slotkin, E.M. A Home-Based, Remote-Clinician-Controlled, Physical Therapy Device Leads to Superior Outcomes When Compared to Standard Physical Therapy for Rehabilitation After Total Knee Arthroplasty. J. Arthroplast. 2023, 38, 497–501. [Google Scholar] [CrossRef]
- Özden, F.; Sarı, Z. The effect of mobile application-based rehabilitation in patients with total knee arthroplasty: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2023, 113, 105058. [Google Scholar] [CrossRef] [PubMed]
- Berton, A.; Longo, U.G.; Candela, V.; Fioravanti, S.; Giannone, L.; Arcangeli, V.; Alciati, V.; Berton, C.; Facchinetti, G.; Marchetti, A.; et al. Virtual Reality, Augmented Reality, Gamification, and Telerehabilitation: Psychological Impact on Orthopedic Patients’ Rehabilitation. J. Clin. Med. 2020, 9, 2567. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Donzelli, S.; Negrini, A.; Negrini, A.; Romano, M.; Fabio, Z. Feasibility and acceptability of telemedicine to substitute outpatient rehabilitation services in the COVID-19 emergency in Italy: An observational everyday clinical-life study. Arch. Phys. Med. Rehabil. 2020, 101, 2027–2032. [Google Scholar] [CrossRef]
- Nuevo, M.; Rodríguez-Rodríguez, D.; Jauregui, R.; Fabrellas, N.; Zabalegui, A.; Conti, M.; Prat-Fabregat, S. Telerehabilitation following fast-track total knee arthroplasty is effective and safe: A randomized controlled trial with the ReHub® platform. Disabil. Rehabil. 2023, 1–11. [Google Scholar] [CrossRef]
- Donabedian, A. The quality of care. How can it be assessed? JAMA 1988, 260, 1743–1748. [Google Scholar] [CrossRef]
- Shirley, E.D.; Sanders, J.O. Patient satisfaction: Implications and predictors of success. J. Bone Jt. Surg. Am. 2013, 95, e69. [Google Scholar] [CrossRef] [PubMed]
- Tousignant, M.; Moffet, H. Cost analysis of in-home telerehabilitation for postknee arthroplasty. J. Med. Internet Res. 2015, 17, e83. [Google Scholar] [CrossRef]
- Moffet, H.; Tousignant, M.; Nadeau, S.; Merette, C.; Boissy, P.; Corriveau, H.; Marquis, F.; Cabana, F.; Ranger, P.; Belzile, E.L.; et al. In-home telerehabilitation compared with face-to-face rehabilitation after total knee arthroplasty: A noninferiority randomized controlled trial. J. Bone Jt. Surg. Am. 2015, 97, 1129–1141. [Google Scholar] [CrossRef]
Telerehab | In-Presence | p-Value | |
---|---|---|---|
Age | 66.8 ± 10.2 | 65.4 ± 11.8 | 0.18 |
BMI | 26.8 ± 2.6 | 27.2 ± 2.9 | 0.09 |
Sex | 0.87 | ||
| 34 (41%) | 36 (44%) | |
| 48 (59%) | 46 (56%) | |
Side affected | 0.41 | ||
| 24 (30%) | 30 (36.6%) | |
| 58 (70%) | 52 (63.4%) | |
Education (no. of years completed) | 15.8 ± 3.7 | 15.0 ± 4.2 | 0.01 |
Work status | 0.58 | ||
| 27% | 22% | |
| 73% | 78% | |
Comfort with the use of technology (tablet, smartphone, or computer) | 0.51 | ||
| 21.90% | 19.50% | |
| 67.10% | 61% | |
| 4.90% | 8.50% | |
| 6.10% | 11% |
Telerehab | In-Presence | p-Value | |
---|---|---|---|
TUG | 20 ± 2 | 18 ± 1.5 | <0.01 |
Flexion | 70 ± 3.1 | 66 ± 8.5 | <0.01 |
Extension deficit | 8 ± 2 | 10 ± 1.4 | <0.01 |
Resting pain | 2.2 ± 0.1 | 1.7 ± 0.4 | <0.01 |
Movement pain | 3.6 ± 0.5 | 3.2 ± 0.4 | <0.01 |
OKS | 22 ± 1.3 | 23 ± 2.1 | <0.01 |
KOOS | 46.2 ± 10.2 | 48.4 ± 8.4 | 0.1 |
TELEREHAB | IN-PRESENCE | Inter-Group Difference p-Value | Effect Size | |
---|---|---|---|---|
RESTING PAIN | ||||
Baseline | 2.2 ± 0.1 | 1.7 ± 0.4 | ||
12 weeks | 0.8 ± 0.2 | 0.6 ± 0.1 | ||
Δ 12 weeks—Baseline | −1.4 ± 0.2 | −1.1 ± 0.5 | <0.01 | 0.27 |
Intra-group changes p-value | <0.01 | <0.01 | ||
MOVEMENT PAIN | ||||
Baseline | 3.6 ± 0.5 | 3.2 ± 0.4 | ||
12 weeks | 1.6 ± 0.3 | 1.2 ± 0.3 | ||
Δ 12 weeks—Baseline | −2 ± 0.6 | −2 ± 0.6 | 0.93 | <0.01 |
Intra-group changes p-value | <0.01 | <0.01 |
TELEREHAB | IN-PRESENCE | Inter-Group Difference p-Value | Effect Size | |
---|---|---|---|---|
FLEXION | ||||
Baseline | 70 ± 3.1 | 66 ± 8.5 | ||
12 weeks | 115 ± 5.6 | 112.1 ± 6.3 | ||
Δ 12 weeks—Baseline | 45 ± 6.7 | 46.1 ± 10.8 | 0.32 | 0.08 |
Intra-group changes p-value | <0.01 | <0.01 | ||
EXTENSION DEFICIT | ||||
Baseline | 8 ± 2 | 10 ± 1.4 | ||
12 weeks | 4.1 ± 1.5 | 5 ± 1.9 | ||
Δ 12 weeks—Baseline | −3.9 ± 2.5 | −5 ± 2.3 | <0.01 | 0.23 |
Intra-group changes p-value | <0.01 | <0.01 |
TELEREHAB | IN-PRESENCE | Inter-Group Difference p-Value | Effect Size | |
---|---|---|---|---|
TUG test | ||||
Baseline | 20 ± 2 | 18 ± 1.5 | ||
12 weeks | 12 ± 1.5 | 13.1 ± 2 | ||
Δ 12 weeks—Baseline | −8 ± 2.6 | −4.9 ± 2.5 | <0.01 | 0.5 |
Intra-group changes p-value | <0.01 | <0.01 | ||
OKS | ||||
Baseline | 22 ± 1.3 | 23 ± 2.1 | ||
12 weeks | 36 ± 2.7 | 35.1 ± 4.2 | ||
Δ 12 weeks—Baseline | 14 ± 3.1 | 12 ± 4.9 | <0.01 | 0.22 |
Intra-group changes p-value | <0.01 | <0.01 | ||
KOOS | ||||
Baseline | 46.2 ± 10.2 | 48.4 ± 8.4 | ||
12 weeks | 67.4 ± 3.8 | 68.3 ± 6.6 | ||
Δ 12 weeks—Baseline | 21.2 ± 11.2 | 19.8 ± 10.6 | 0.38 | 0.07 |
Intra-group changes p-value | <0.01 | <0.01 |
TELEREHAB | IN-PRESENCE | p-Value | |
---|---|---|---|
How satisfied are you with the results of your surgery? | |||
Very satisfied | 67.1% | 68.2% | 0.86 |
Somewhat satisfied | 21.9% | 24.4% | |
Somewhat dissatisfied | 6.1% | 3.7% | |
Very dissatisfied | 4.9% | 3.7% | |
How satisfied are you with the results of your surgery for improving your pain? | |||
Very satisfied | 65.8% | 63.4% | 0.92 |
Somewhat satisfied | 20.7% | 21.9% | |
Somewhat dissatisfied | 7.4% | 6.1% | |
Very dissatisfied | 6.1% | 8.6% | |
How satisfied are you with the results of surgery for improving your ability to do home or yard work? | |||
Very satisfied | 39.0% | 43.9% | 0.46 |
Somewhat satisfied | 43.9% | 46.3% | |
Somewhat dissatisfied | 9.7% | 7.4% | |
Very dissatisfied | 7.4% | 2.4% | |
How satisfied are you with the results of surgery for improving your ability to do recreational activities? | |||
Very satisfied | 31.7% | 34.2% | 0.9 |
Somewhat satisfied | 43.9% | 46.4 | |
Somewhat dissatisfied | 10.9% | 8.5% | |
Very dissatisfied | 13.5% | 10.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venosa, M.; Romanini, E.; Ciminello, E.; Cerciello, S.; Angelozzi, M.; Calvisi, V. Telerehabilitation Is a Valid Option for Total Knee Arthroplasty Patients: A Retrospective Pilot Study Based on Our Experience during the COVID-19 Pandemic. Healthcare 2023, 11, 2489. https://doi.org/10.3390/healthcare11182489
Venosa M, Romanini E, Ciminello E, Cerciello S, Angelozzi M, Calvisi V. Telerehabilitation Is a Valid Option for Total Knee Arthroplasty Patients: A Retrospective Pilot Study Based on Our Experience during the COVID-19 Pandemic. Healthcare. 2023; 11(18):2489. https://doi.org/10.3390/healthcare11182489
Chicago/Turabian StyleVenosa, Michele, Emilio Romanini, Enrico Ciminello, Simone Cerciello, Massimo Angelozzi, and Vittorio Calvisi. 2023. "Telerehabilitation Is a Valid Option for Total Knee Arthroplasty Patients: A Retrospective Pilot Study Based on Our Experience during the COVID-19 Pandemic" Healthcare 11, no. 18: 2489. https://doi.org/10.3390/healthcare11182489