Why Percussive Massage Therapy Does Not Improve Recovery after a Water Rescue? A Preliminary Study with Lifeguards
Abstract: Background
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedures
2.3. Recovery
2.4. Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hendricks, S.; Hill, H.; Hollander, S.; den Lombard, W.; Parker, R. Effects of foam rolling on performance and recovery: A systematic review of the literature to guide practitioners on the use of foam rolling. J. Bodyw. Mov. Ther. 2020, 24, 151–174. [Google Scholar] [CrossRef] [PubMed]
- Skinner, B.; Moss, R.; Hammond, L. A Systematic Review and Meta-Analysis of the effects of foam rolling on range of motion, recovery and markers of athletic performance. J. Bodyw. Mov. Ther. 2020, 24, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Stanek, J.M.; Dodd, D.J.; Kelly, A.R.; Wolfe, A.M.; Swenson, R.A. Active duty firefighters can improve Functional Movement Screen (FMS) scores following an 8-week individualized client workout program. Work 2017, 56, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Cocke, C.; Dawes, J.; Orr, R.M. The Use of 2 Conditioning Programs and the Fitness Characteristics of Police Academy Cadets. J. Athl. Train. 2016, 51, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Barcala-Furelos, R.; González-Represas, A.; Rey, E.; Martínez-Rodríguez, A.; Kalén, A.; Marques, O.; Rama, L. Is Low-Frequency Electrical Stimulation a Tool for Recovery after a Water Rescue? A Cross-Over Study with Lifeguards. Int. J. Environ. Res. Public Health 2020, 17, 5854. [Google Scholar] [CrossRef] [PubMed]
- Kalén, A.; Pérez-Ferreirós, A.; Barcala-Furelos, R.; Méndez, M.F.; Padrón-Cabo, A.; Prieto, J.A.; Ríos-Ave, A.; Abelairas-Gómez, C. How can lifeguards recover better? A cross-over study comparing resting, running, and foam rolling. Am. J. Emerg. Med. 2017, 35, 1887–1891. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Calvete, A.; Lage-Rey, A.; Lorenzo-Martínez, M.; Rey, E. Does a short intervention with vibration foam roller recover lifeguards better after a water rescue? A pilot study. Am. J. Emerg. Med. 2021, 49, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Suominen, P.K.; Vähätalo, R. Neurologic long term outcome after drowning in children. Scand. J. Trauma Resusc. Emerg. Med. 2012, 20, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suominen, P.; Baillie, C.; Korpela, R.; Rautanen, S.; Ranta, S.; Olkkola, K.T. Impact of age, submersion time and water temperature on outcome in near-drowning. Resuscitation 2002, 52, 247–254. [Google Scholar] [CrossRef]
- Quan, L.; Bierens, J.J.L.M.; Lis, R.; Rowhani-Rahbar, A.; Morley, P.; Perkins, G.D. Predicting outcome of drowning at the scene: A systematic review and meta-analyses. Resuscitation 2016, 104, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Szpilman, D.; Tipton, M.; Sempsrott, J.; Webber, J.; Bierens, J.; Dawes, P.; Seabra, R.; Barcala-Furelos, R.; Queiroga, A.C. Drowning timeline: A new systematic model of the drowning process. Am. J. Emerg. Med. 2016, 34, 2224–2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcala-Furelos, R.; Abelairas-Gomez, C.; Romo-Perez, V.; Palacios-Aguilar, J. Effect of physical fatigue on the quality CPR: A water rescue study of lifeguards: Physical fatigue and quality CPR in a water rescue. Am. J. Emerg. Med. 2013, 31, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.; Ozanne-Smith, J. Surf Lifeguard Rescues. Wilderness Environ. Med. 2013, 24, 285–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcala-Furelos, R.; Szpilman, D.; Palacios-Aguilar, J.; Costas-Veiga, J.; Gómez, C.A.; Bores-Cerezal, A.; López-García, S.; Rodriguez-Nunez, A. Assessing the efficacy of rescue equipment in lifeguard resuscitation efforts for drowning. Am. J. Emerg. Med. 2016, 34, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Koon, W.; Rowhani-Rahbar, A.; Quan, L. Do wave heights and water levels increase ocean lifeguard rescues? Am. J. Emerg. Med. 2018, 36, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Wilke, J. Do Self-Myofascial Release Devices Release Myofascia? Rolling Mechanisms: A Narrative Review. Sports Med. 2019, 49, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Cullen, M.F.L.; Casazza, G.A.; Davis, B.A. Passive Recovery Strategies after Exercise: A Narrative Literature Review of the Current Evidence. Curr. Sports Med. Rep. 2021, 20, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Alizadeh, S.; Hadjizadeh Anvar, S.; Mahmoud, M.M.I.; Ramsay, E.; Hanlon, C.; Cheatham, S. Foam Rolling Prescription: A Clinical Commentary. J. Strength Cond. Res. 2020, 34, 3301–3308. [Google Scholar] [CrossRef] [PubMed]
- Beardsley, C.; Škarabot, J. Effects of self-myofascial release: A systematic review. J. Bodyw. Mov. Ther. 2015, 19, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Lakhwani, M.; Phansopkar, P. Efficacy of Percussive massage Versus Calf Stretching on Pain, Range of Motion, Muscle Strength and Functional Outcomes in Patients with Plantar Fasciitis—A Randomized Control Trial. Protoc. Exch. 2021, 33, 532–539. [Google Scholar] [CrossRef]
- Konrad, A.; Nakamura, M.; Bernsteiner, D.; Tilp, M.T. The Accumulated Effects of Foam Rolling Combined with Stretching on Range of Motion and Physical Performance: A Systematic Review and Meta-Analysis. J. Sports Sci. Med. 2021, 20, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Abelairas-Gómez, C.; Barcala-Furelos, R.; Mecías-Calvo, M.; Rey-Eiras, E.; López-García, S.; Costas-Veiga, J.; Bores-Cerezal, A.; Palacios-Aguilar, J. Prehospital Emergency Medicine at the Beach: What Is the Effect of Fins and Rescue Tubes in Lifesaving and Cardiopulmonary Resuscitation After Rescue? Wilderness Environ. Med. 2017, 28, 176–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marion, K.; Guillaume, G.; Pascale, C.; Charlie, B.; Anton, S. Muscle activity during fin swimming. Procedia Eng. 2010, 2, 3029–3034. [Google Scholar] [CrossRef] [Green Version]
- Slatkovska, L.; Alibhai, S.M.H.; Beyene, J.; Cheung, A.M. Effect of whole-body vibration on BMD: A systematic review and meta-analysis. Osteoporos. Int. 2010, 21, 1969–1980. [Google Scholar] [CrossRef] [PubMed]
- Wilke, J.; Niemeyer, P.; Niederer, D.; Schleip, R.; Banzer, W. Influence of Foam Rolling Velocity on Knee Range of Motion and Tissue Stiffness: A Randomized, Controlled Crossover Trial. J. Sport Rehab. 2019, 28, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates, Routledge: New York, NY, USA, 1988. [Google Scholar]
- D’Amico, A.; Gillis, J.; McCarthy, K.; Leftin, J.; Molloy, M.; Heim, H.; Burke, C. Foam rolling and indices of autonomic recovery following exercise-induced muscle damage. Int. J. Sports Phys. Ther. 2020, 15, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.A.; Ramer, L.M. Duration of myofascial rolling for optimal recovery, range of motion, and performance: A systematic review of the literature. Int. J. Sports Phys. Ther. 2019, 14, 845–859. [Google Scholar] [CrossRef]
- Romero-Moraleda, B.; González-García, J.; Cuéllar-Rayo, Á.; Balsalobre-Fernández, C.; Muñoz-García, D.; Morencos, E. Effects of Vibration and Non-Vibration Foam Rolling on Recovery after Exercise with Induced Muscle Damage. J. Sports Sci. Med. 2019, 18, 172–180. [Google Scholar] [PubMed]
- Greenwood, J.D.; Moses, G.E.; Bernardino, F.M.; Gaesser, G.A.; Weltman, A. Intensity of exercise recovery, blood lactate disappearance, and subsequent swimming performance. J. Sports Sci. 2008, 26, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Ajimsha, M.S.; Al-Mudahka, N.R.; Al-Madzhar, J.A. Effectiveness of myofascial release: Systematic review of randomized controlled trials. J. Bodyw. Mov. Ther. 2015, 19, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Wilke, J.; Müller, A.L.; Giesche, F.; Power, G.; Ahmedi, H.; Behm, D.G. Acute Effects of Foam Rolling on Range of Motion in Healthy Adults: A Systematic Review with Multilevel Meta-analysis. Sports Med. 2020, 50, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, M.P.; Rybicki, K.J. Discharge properties of group III and IV muscle afferents: Their responses to mechanical and metabolic stimuli. Circ. Res. 1987, 61 Pt 2, I60–165. [Google Scholar] [PubMed]
- Weerapong, P.; Hume, P.A.; Kolt, G.S. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 2005, 35, 235–256. [Google Scholar] [CrossRef] [PubMed]
- Sonza, A.; Robinson, C.C.; Achaval, M.; Zaro, M.A. Whole Body Vibration at Different Exposure Frequencies: Infrared Thermography and Physiological Effects. Sci. World J. 2015, 2015, e452657. [Google Scholar] [CrossRef] [Green Version]
- Lamont, H.S.; Cramer, J.T.; Bemben, D.A.; Shehab, R.L.; Anderson, M.A.; Bemben, M.G. The Acute Effect of Whole-Body Low-Frequency Vibration on Countermovement Vertical Jump Performance in College-Aged Men. J. Strength Cond. Res. 2010, 24, 3433–3442. [Google Scholar] [CrossRef] [Green Version]
Passive Recovery | PMT | ANOVA p-Value (np2) | |||||
---|---|---|---|---|---|---|---|
Post Rescue | Post Recovery | Post Rescue | Post Recovery | Recovery | Moment | Recovery × Moment | |
Global | 7.5 ± 0.9 | 4.0 ± 1.6 * | 7.0 ± 1.2 | 3.3 ± 1.8 * | 0.080 (0.217) | <0.001 (0.917) | 0.583 (0.024) |
Arms | 3.7 ± 1.6 | 1.4 ± 0.9 * | 3.5 ± 1.8 | 1.4 ± 1.2 * | 0.583 (0.024) | <0.001 (0.756) | 0.551 (0.028) |
Chest | 7.3 ± 1.8 | 2.5 ± 1.7 * | 7.1 ± 1.2 | 2.4 ± 2.3 * | 0.773 (0.007) | <0.001 (0.891) | 1.000 (0.000) |
Legs | 6.9 ± 1.2 | 3.6 ± 1.7 * | 6.6 ± 1.5 | 2.9 ± 2.1 * | 0.230 (0.109) | <0.001 (0.900) | 0.444 (0.046) |
L1 | L2 | L3 | |
---|---|---|---|
Passive recovery | 3.6 ± 1.4 | 10.5 ± 2.7 * | 9.7 ± 3.0 * |
PMT | 4.1 ± 1.7 | 10.8 ± 3.2 * | 9.8 ± 3.1 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Calvete, A.; Lorenzo-Martínez, M.; Pérez-Ferreirós, A.; Couso-Bruno, A.; Carracedo-Rodríguez, E.; Barcala-Furelos, M.; Barcala-Furelos, R.; Padrón-Cabo, A. Why Percussive Massage Therapy Does Not Improve Recovery after a Water Rescue? A Preliminary Study with Lifeguards. Healthcare 2022, 10, 693. https://doi.org/10.3390/healthcare10040693
Alonso-Calvete A, Lorenzo-Martínez M, Pérez-Ferreirós A, Couso-Bruno A, Carracedo-Rodríguez E, Barcala-Furelos M, Barcala-Furelos R, Padrón-Cabo A. Why Percussive Massage Therapy Does Not Improve Recovery after a Water Rescue? A Preliminary Study with Lifeguards. Healthcare. 2022; 10(4):693. https://doi.org/10.3390/healthcare10040693
Chicago/Turabian StyleAlonso-Calvete, Alejandra, Miguel Lorenzo-Martínez, Alexandra Pérez-Ferreirós, Antonio Couso-Bruno, Eloy Carracedo-Rodríguez, Martín Barcala-Furelos, Roberto Barcala-Furelos, and Alexis Padrón-Cabo. 2022. "Why Percussive Massage Therapy Does Not Improve Recovery after a Water Rescue? A Preliminary Study with Lifeguards" Healthcare 10, no. 4: 693. https://doi.org/10.3390/healthcare10040693
APA StyleAlonso-Calvete, A., Lorenzo-Martínez, M., Pérez-Ferreirós, A., Couso-Bruno, A., Carracedo-Rodríguez, E., Barcala-Furelos, M., Barcala-Furelos, R., & Padrón-Cabo, A. (2022). Why Percussive Massage Therapy Does Not Improve Recovery after a Water Rescue? A Preliminary Study with Lifeguards. Healthcare, 10(4), 693. https://doi.org/10.3390/healthcare10040693