Noether Theorem in Stochastic Optimal Control Problems via Contact Symmetries
Abstract
:1. Introduction
Plan of the Paper
2. A Brief Survey on Stochastic Optimal Control
2.1. Deterministic Optimal Control and Lagrange Mechanics
2.2. Classical Stochastic Optimal Control Problem
- (i)
- We have
- (ii)
- The SDE
- (iii)
- The process , lies in .
2.3. Stochastic Hamilton–Jacobi–Bellman Equation
- (i)
- For every , is a -map from into , -a.s.,
- (ii)
- For each , is a continuous semi-martingale -a.s., and it satisfies
- (a)
- For every , is a -map from to , -a.s.,
- (b)
- For every , is an adapted process.
- (i)
- For each , is a -map from into , -a.s.,
- (ii)
- For each , and are continuous -adapted processes.
3. Solutions of PDEs via Contact Symmetries
3.1. Jet Spaces and Jet Bundles
3.2. Contact Transformations
- The dilation of independent variable x, i.e., (see the notation in Remark 9), related to the generator function and generating the one parameter group defined by
- The dilation of dependent variable u, namely, related to the generator function and generating the one parameter group defined by
3.3. Symmetries and Classical Noether Theorem
4. Noether Theorem for Stochastic Optimal Control
4.1. The Case of Deterministic HJB Equation
4.2. The Case of Stochastic HJB Equation
5. Merton’s Optimal Portfolio Problem
5.1. Markovian Case
5.2. Non-Markovian Case
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HJB | Hamilton–Jacobi–Bellman |
ODE | Ordinary differential equations |
SDE | Stochastic differential equations |
PDE | Partial differential equations |
-a.s. | -almost surely |
References
- Hawkins, T. Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics 1869–1926; Sources and Studies in the History of Mathematics and Physical Sciences; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1993; Volume 107. [Google Scholar]
- Stephani, H. Differential Equations: Their Solution Using Symmetries; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Arnol’d, V.I. Mathematical Methods of Classical Mechanics, 2nd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1989; Volume 60, p. xvi+508. [Google Scholar] [CrossRef]
- Van der Schaft, A.J. Symmetries in optimal control. SIAM J. Control Optim. 1987, 25, 245–259. [Google Scholar] [CrossRef]
- Torres, D.F.M. Carathéodory equivalence, Noether theorems, and Tonelli full-regularity in the calculus of variations and optimal control. J. Math. Sci. 2004, 120, 1032–1050. [Google Scholar] [CrossRef] [Green Version]
- Cardin, F.; Viterbo, C. Commuting Hamiltonians and Hamilton-Jacobi multi-time equations. Duke Math. J. 2008, 144, 235–284. [Google Scholar] [CrossRef] [Green Version]
- Treanţă, S.; Udrişte, C. Single-time and multi-time Hamilton-Jacobi theory based on higher order Lagrangians. In Mathematical and Statistical Applications in Life Sciences and Engineering; Springer: Singapore, 2017; pp. 71–95. [Google Scholar]
- Treanţă, S. Noether-Type First Integrals Associated with Autonomous Second-Order Lagrangians. Symmetry 2019, 11, 1088. [Google Scholar] [CrossRef] [Green Version]
- Albeverio, S.; De Vecchi, F.C.; Morando, P.; Ugolini, S. Weak symmetries of stochastic differential equations driven by semimartingales with jumps. Electron. J. Probab. 2020, 25, 34. [Google Scholar] [CrossRef]
- Albeverio, S.; De Vecchi, F.C.; Morando, P.; Ugolini, S. Random transformations and invariance of semimartingales on Lie groups. Random Oper. Stoch. Equ. 2021, 29, 41–65. [Google Scholar] [CrossRef]
- De Vecchi, F.C.; Morando, P.; Ugolini, S. A note on symmetries of diffusions within a martingale problem approach. Stoch. Dyn. 2019, 19, 1950011. [Google Scholar] [CrossRef] [Green Version]
- De Vecchi, F.C.; Morando, P.; Ugolini, S. Reduction and reconstruction of SDEs via Girsanov and quasi Doob symmetries. J. Phys. A 2021. [Google Scholar] [CrossRef]
- De Vecchi, F.C.; Morando, P.; Ugolini, S. Symmetries of stochastic differential equations using Girsanov transformations. J. Phys. A 2020, 53, 135204. [Google Scholar] [CrossRef] [Green Version]
- De Vecchi, F.C.; Romano, A.; Ugolini, S. A symmetry-adapted numerical scheme for SDEs. J. Geom. Mech. 2019, 11, 325–359. [Google Scholar] [CrossRef] [Green Version]
- Gaeta, G. W-symmetries of Ito stochastic differential equations. J. Math. Phys. 2019, 60, 053501. [Google Scholar] [CrossRef] [Green Version]
- Gaeta, G. Symmetry of stochastic non-variational differential equations. Phys. Rep. 2017, 686, 1–62. [Google Scholar] [CrossRef] [Green Version]
- Gaeta, G.; Spadaro, F. Symmetry classification of scalar Ito equations with multiplicative noise. J. Nonlinear Math. Phys. 2020, 27, 679–687. [Google Scholar] [CrossRef]
- Kozlov, R. Lie point symmetries of Stratonovich stochastic differential equations. J. Phys. A 2018, 51, 505201. [Google Scholar] [CrossRef]
- Liao, M. Invariant diffusion processes under Lie group actions. Sci. China Math. 2019, 62, 1493–1510. [Google Scholar] [CrossRef]
- Arnaudon, M.; Zambrini, J.C. A stochastic look at geodesics on the sphere. In Geometric Science of Information; Nielsen, F., Barbaresco, F., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10589, pp. 470–476. [Google Scholar] [CrossRef] [Green Version]
- Baez, J.C.; Fong, B. A Noether theorem for Markov processes. J. Math. Phys. 2013, 54, 013301. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Shen, J.; Shen, Y. A Noether theorem for random locations. arXiv 2018, arXiv:1811.03490. [Google Scholar]
- Lescot, P.; Zambrini, J.C. Isovectors for the Hamilton-Jacobi-Bellman equation, formal stochastic differentials and first integrals in Euclidean quantum mechanics. In Seminar on Stochastic Analysis, Random Fields and Applications IV; Dalang, R.C., Dozzi, M., Russo, F., Eds.; Progress in Probability; Birkhäuser: Basel, Switzerland, 2004; Volume 58, pp. 187–202. [Google Scholar]
- Lescot, P.; Zambrini, J.C. Probabilistic deformation of contact geometry, diffusion processes and their quadratures. In Seminar on Stochastic Analysis, Random Fields and Applications V; Dalang, R.C., Dozzi, M., Russo, F., Eds.; Progress in Probability; Birkhäuser: Basel, Switzerland, 2008; Volume 59, pp. 203–226. [Google Scholar] [CrossRef]
- Misawa, T. Conserved quantities and symmetry for stochastic dynamical systems. Phys. Lett. A 1994, 195, 185–189. [Google Scholar] [CrossRef]
- Misawa, T. New conserved quantities derived from symmetry for stochastic dynamical systems. J. Phys. A 1994, 27, L777–L782. [Google Scholar] [CrossRef]
- Privault, N.; Zambrini, J.C. Stochastic deformation of integrable dynamical systems and random time symmetry. J. Math. Phys. 2010, 51, 082104. [Google Scholar] [CrossRef] [Green Version]
- Thieullen, M.; Zambrini, J.C. Symmetries in the stochastic calculus of variations. Probab. Theory Relat. Fields 1997, 107, 401–427. [Google Scholar] [CrossRef]
- Zambrini, J.C. On the geometry of the Hamilton-Jacobi-Bellman equation. J. Geom. Mech. 2009, 1, 369–387. [Google Scholar] [CrossRef]
- Misawa, T. Conserved quantities and symmetries related to stochastic dynamical systems. Ann. Inst. Stat. Math. 1999, 51, 779–802. [Google Scholar] [CrossRef]
- Zambrini, J.C. The research program of stochastic deformation (with a view toward geometric mechanics). In Stochastic Analysis: A Series of Lectures; Progress in Probability; Birkhäuser/Springer: Basel, Switzerland, 2015; Volume 68, pp. 359–393. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.G. Stochastic Hamilton-Jacobi equations. SIAM J. Control Optim. 1992, 30, 284–304. [Google Scholar] [CrossRef]
- Merton, R.C. Lifetime portfolio selection under uncertainty: The continuous-time case. Rev. Econ. Stat. 1969, 51, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.C.G. Optimal Investment; SpringerBriefs in Quantitative Finance; Springer: Berlin/Heidelberg, Germany, 2013; Volume 1007. [Google Scholar]
- Benth, F.E.; Karlsen, K.H.; Reikvam, K. Merton’s portfolio optimization problem in a Black and Scholes market with non-Gaussian stochastic volatility of Ornstein-Uhlenbeck type. Math. Financ. 2003, 13, 215–244. [Google Scholar] [CrossRef]
- Biagini, S.; Pınar, M.Ç. The robust Merton problem of an ambiguity averse investor. Math. Financ. Econ. 2017, 11, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Fouque, J.P.; Sircar, R.; Zariphopoulou, T. Portfolio optimization and stochastic volatility asymptotics. Math. Financ. 2017, 27, 704–745. [Google Scholar] [CrossRef]
- Øksendal, B.; Sulem, A.; Zhang, T. A stochastic HJB equation for optimal control of forward-backwards SDEs. In The Fascination of Probability, Statistics and Their Applications; Springer: Cham, Switzerland, 2016; pp. 435–446. [Google Scholar]
- Askenazy, P. Symmetry and optimal control in economics. J. Math. Anal. Appl. 2003, 282, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Fleming, W.H.; Rishel, R.W. Deterministic and Stochastic Optimal Control; Applications of Mathematics; Springer: New York, NY, USA, 1975; Volume 1. [Google Scholar]
- Pham, H. Continuous-Time Stochastic Control and Optimization with Financial Applications; Stochastic Modelling and Applied Probability; Springer: Berlin/Heidelberg, Germany, 2009; Volume 61. [Google Scholar]
- Touzi, N. Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE; Fields Institute Monographs; Springer Science & Business Media: New York, NY, USA, 2012; Volume 29. [Google Scholar]
- Yong, J.; Zhou, X.Y. Stochastic Controls: Hamiltonian Systems and HJB Equations; Stochastic Modelling and Applied Probability; Springer: New York, NY, USA, 1999; Volume 43. [Google Scholar]
- Ikeda, N.; Watanabe, S. Stochastic Differential Equations and Diffusion Processes; North Holland Publ. Co.: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Kunita, H. Some extensions of Ito’s formula. In Séminaire de Probabilités XV 1979/80; Azéma, J., Yor, M., Eds.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; Volume 850, pp. 118–141. [Google Scholar]
- Kunita, H. Stochastic Flows and Stochastic Differential Equations; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Rogers, L.C.G.; Williams, D. Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Buckdahn, R.; Ma, J. Pathwise stochastic control problems and stochastic HJB equations. SIAM J. Control Optim. 2007, 45, 2224–2256. [Google Scholar] [CrossRef]
- Chang, M.H.; Pang, T.; Yong, J. Optimal stopping problem for stochastic differential equations with random coefficients. SIAM J. Control Optim. 2009, 48, 941–971. [Google Scholar] [CrossRef] [Green Version]
- Englezos, N.; Karatzas, I. Utility maximization with habit formation: Dynamic programming and stochastic PDEs. SIAM J. Control Optim. 2009, 48, 481–520. [Google Scholar] [CrossRef]
- Qiu, J. Viscosity Solutions of Stochastic Hamilton–Jacobi–Bellman Equations. SIAM J. Control Optim. 2018, 56, 3708–3730. [Google Scholar] [CrossRef] [Green Version]
- De Vecchi, F.C.; Morando, P. The geometry of differential constraints for a class of evolution PDEs. J. Geom. Phys. 2020, 156, 103771. [Google Scholar] [CrossRef]
- Gaeta, G. Nonlinear Symmetries and Nonlinear Equations; Mathematics and Its Applications; Springer: Dordrecht, The Netherlands, 1994; Volume 299. [Google Scholar] [CrossRef]
- Hydon, P.E. Symmetry Methods for Differential Equations: A Beginner’s Guide; Cambridge Texts in Applied Mathematics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bocharov, A.; Chetverikov, V.; Duzhin, S.; Khor’kova, N.; Krasil’shchik, I.; Samokhin, A.; Torkhov, Y.; Verbovetsky, A.; Vinogradov, A. Symmetries and Conservation Laws for Differential Equations of Mathematical Physics; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1999; Volume 182, p. 333. [Google Scholar] [CrossRef]
- Saunders, D.J. The Geometry of Jet Bundles; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1989; Volume 142, p. viii+293. [Google Scholar] [CrossRef]
- Arnol’d, V.I. Geometrical Methods in the Theory of Ordinary Differential Equations; Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1988; Volume 250. [Google Scholar] [CrossRef]
- Geiges, H. An Introduction to Contact Topology; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2008; Volume 109, p. xvi+440. [Google Scholar] [CrossRef]
- Geiges, H. A brief history of contact geometry and topology. Expo. Math. 2001, 19, 25–53. [Google Scholar] [CrossRef] [Green Version]
- de Carvalho Griebeler, M.; de Araújo, J.P. General envelope theorems for multidimensional type spaces. In Proceedings of the 31º Meeting of the Brazilian Econometric Society, Rio de Janeiro, Brazil, 9–11 December 2009. [Google Scholar]
- Milgrom, P.; Segal, I. Envelope theorems for arbitrary choice sets. Econometrica 2002, 70, 583–601. [Google Scholar] [CrossRef] [Green Version]
- de Lara, M.C. Reduction of the Zakai equation by invariance group techniques. Stoch. Process. Their Appl. 1998, 73, 119–130. [Google Scholar] [CrossRef] [Green Version]
- De Vecchi, F.C. Finite dimensional solutions to SPDEs and the geometry of infinite jet bundles. arXiv 2017, arXiv:1712.08490. [Google Scholar]
- Pratt, J.W. Risk aversion in the small and in the large. In Uncertainty in Economics; Elsevier: Amsterdam, The Netherlands, 1978; pp. 59–79. [Google Scholar] [CrossRef]
- Lorig, M.; Sircar, R. Portfolio optimization under local-stochastic volatility: Coefficient Taylor series approximations and implied sharpe ratio. SIAM J. Financ. Math. 2016, 7, 418–447. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Vecchi, F.C.; Mastrogiacomo, E.; Turra, M.; Ugolini, S. Noether Theorem in Stochastic Optimal Control Problems via Contact Symmetries. Mathematics 2021, 9, 953. https://doi.org/10.3390/math9090953
De Vecchi FC, Mastrogiacomo E, Turra M, Ugolini S. Noether Theorem in Stochastic Optimal Control Problems via Contact Symmetries. Mathematics. 2021; 9(9):953. https://doi.org/10.3390/math9090953
Chicago/Turabian StyleDe Vecchi, Francesco C., Elisa Mastrogiacomo, Mattia Turra, and Stefania Ugolini. 2021. "Noether Theorem in Stochastic Optimal Control Problems via Contact Symmetries" Mathematics 9, no. 9: 953. https://doi.org/10.3390/math9090953
APA StyleDe Vecchi, F. C., Mastrogiacomo, E., Turra, M., & Ugolini, S. (2021). Noether Theorem in Stochastic Optimal Control Problems via Contact Symmetries. Mathematics, 9(9), 953. https://doi.org/10.3390/math9090953