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Abstract: We establish a generalization of the Noether theorem for stochastic optimal control prob-
lems. Exploiting the tools of jet bundles and contact geometry, we prove that from any (contact)
symmetry of the Hamilton–Jacobi–Bellman equation associated with an optimal control problem it
is possible to build a related local martingale. Moreover, we provide an application of the theoreti-
cal results to Merton’s optimal portfolio problem, showing that this model admits infinitely many
conserved quantities in the form of local martingales.

Keywords: Noether theorem; stochastic optimal control; contact symmetries; Merton’s optimal
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1. Introduction

The concept of symmetry of ordinary or partial differential equations (ODEs and PDEs)
was introduced by Sophus Lie at the end of the 19th century with the aim of extending
the Galois theory from polynomial to differential equations. Actually, all the theory of Lie
groups and algebras was developed by Lie himself as well as the principal tools for facing
the problem of symmetries of differential equations (see [1] for an historical introduction to
the subject and [2,3] for some modern presentations).

One of the most important applications of the study of symmetries in physical systems
was provided by Emmy Noether. She understood that when an equation comes from a
variational problem, such as in Lagrangian mechanics, general relativity or, more generally,
field theory, it is possible to relate each symmetry of the equation to a conserved quantity,
i.e., a function of the state of the system that does not change during the evolution of the
dynamics, and conversely, to each conserved quantity it is possible to associate a symmetry
of the motion. The simplest examples are, in Newtonian and Lagrangian mechanics, the
conservation of energy, which is related to the invariance with respect to time translation,
and the conservation of angular momentum, which is correlated to the invariance with
respect to rotations. The classical Noether theorem (see, e.g., [2,4] for an exposition of
the subject) has found many generalizations in deterministic optimal control theory (see,
e.g., [5,6] and also [7–9] on the related problem of commuting Hamiltonians and Hamilton–
Jacobi multi-time equations).

The development of a Lie symmetry analysis for stochastic differential equations
(SDEs) and general random systems is relatively recent (see, e.g., [10–20] for some recent
developments in the non-variational case). For stochastic systems arising from a variational
framework, it is certainly interesting to study the relation between their symmetries and

Mathematics 2021, 9, 953. https://doi.org/10.3390/math9090953 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7809-1534
https://orcid.org/0000-0002-3996-8954
https://orcid.org/0000-0003-4697-9771
https://orcid.org/0000-0003-1322-5084
https://doi.org/10.3390/math9090953
https://doi.org/10.3390/math9090953
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9090953
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9090953?type=check_update&version=2


Mathematics 2021, 9, 953 2 of 34

functionals that are conserved by their flow, and, in particular, to establish stochastic
generalizations of the Noether theorem.

The problem of finding some kinds of conservation laws for SDEs was discussed
in various papers (see [21–30]). We could summarize three different approaches to this
problem. The first one was considered by Misawa in [26,27,31], where the author studied
the case in which some Markovian functions of solutions of SDEs are exactly conserved
during time evolution.

The second approach was adopted by Zambrini and co-authors in a number of works.
They put themselves in the framework of Euclidean quantum mechanics, which repre-
sents a geometrically consistent stochastic deformation of classical mechanics where a
Gaussian noise is added to a classical system. This setting has a close connection with
optimal transport and optimal control (see, e.g., [32] for an introduction to the topic). More
precisely, in [29], a generalization of the Noether theorem has been proved: to any one-
parameter symmetry of a variational problem it is possible to associate a martingale that
is independent both from the initial and final condition of the system. This first step was
quite important since it stressed that the suitable generalization of conserved quantities in
a stochastic setting is not a function that remains constant during the time evolution of a
stochastic system, but a function that is constant in mean. Another remarkable advance in
the study of variational symmetries was achieved in [24,25,30], where it was noted that the
symmetries of the Hamilton–Jacobi–Bellman (HJB) equation of the considered variational
problem are the correct objects to be associated to the aforementioned martingales and the
contact geometry is a good framework in which a stochastic version of the Noether theorem
can be formulated. Indeed, to each Lie point symmetry of the HJB equation it is possible
to associate a martingale for the evolution of the system. It is worth also mentioning the
papers [21,28], where a suitable notion of integrable system, i.e., a system with a number of
martingales and symmetries equal to the number of the dimension, is discussed.

The third approach was proposed by Baez and Fong in [22] (see also [23]). The authors
showed a method to build martingales applying the action of symmetries to solution to
backward Kolmogorov equation, that can be interpreted as a linear version of HJB equation
obtained when the control and the objective function are trivial.

In our paper, we generalize at least along two directions the approach proposed by
Zambrini and co-authors, as listed above. First, we work in a different optimal control
setting that can be seen as a generalization of the variational framework described in their
articles. Second, we do not only restrict to Lie point symmetries but we take advantage of
the general notion of contact symmetry, namely a transformation preserving the contact
structure of the jet space (see Section 3).

We prove here a Noether theorem (Theorem 12) that relates to any contact symmetry
of the HJB equation associated with an optimal control problem, a martingale that is given
by the generator of the contact symmetry. More precisely, if we consider the generator
Ω(t, x, u, ux) of a contact symmetry (which is a regular function defined on the jet space
J1(Rn,R), i.e., a map depending on a function u and on its first derivatives ux), a regular
solution U(t, x) to the HJB equation and the solution Xt to the optimal control problem,
then the process Ot = Ω(t, Xt, U(t, Xt),∇U(t, Xt)), obtained by composing the generator
Ω with the function U and the process X, is a local martingale.

Furthermore, we generalize the Noether theorem also to the case where the coeffi-
cients and the Lagrangian of the control problem are random. Indeed, we establish that
the Noether theorem holds also in the case of stochastic HJB equation, introduced in [33]
by Peng to study the optimal control problem with stochastic final condition or stochas-
tic Lagrangian, provided that we restrict ourselves to a subset of Lie point symmetries
(Theorem 13 and Corollary 1).

Finally, the present paper provides an application of our theory to a non-trivial
interesting problem arising in mathematical finance, that is, Merton’s optimal portfolio
problem. First proposed by Merton in [34], this model finds nowadays many different
applications and generalizations (see [35] for a review of the original problem and various
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generalizations and [36–39] for some more recent works on the subject). A particular form
of the Noether theorem for this problem can be found in [40]. We show here that the HJB
equation of this optimal control system admits infinitely many contact symmetries. It is
important to notice that the contact symmetry generalization is essential in this specific
problem, since, when we restrict to Lie point symmetries as it is done in the aforementioned
literature, the equation admits only a finite number of infinitesimal invariants. The presence
of infinitely many contact symmetries yields the possibility to construct infinitely many
martingales whose means are preserved by the evolution of the system. Moreover, we
also point out that, when the final condition is random or the coefficients of the evolution
of the stock are general adapted processes, our stochastic generalization of the Noether
theorem (Corollary 1) allows us to construct some non-trivial martingales for this classical
mathematical model. We think that the presence of these martingales could be related to
the existence of many explicit solutions for Merton’s problem, and therefore we expect that
the methods presented here can be used to build other explicit solutions for it. We plan to
study in a future work the financial consequences of the conservation laws individuated in
this paper.

Since the stochastic and geometrical frameworks are not so commonly put together,
we also provide a concise introduction to both these subjects.

Plan of the Paper

The paper is organized as follows. Section 2 introduces stochastic optimal con-
trol problems both in the deterministic and stochastic case, presenting also the HJB
equation, and it is useful also to fix the notations that we adopt throughout the paper.
Contact symmetries and their properties in the PDEs setting are discussed in Section 3.
Section 4 contains the main theoretical results of the paper, namely the Noether theorems
for deterministic and stochastic HJB equations. The application of such results to Merton’s
optimal portfolio problem is given in Section 5.

2. A Brief Survey on Stochastic Optimal Control

We give here an overview of some results about stochastic control problems, referring
the interested reader to [41–44] for further investigations on such results, though more
precise references will be given throughout the section. The main aim of this section is to
introduce the topics we will deal with and to give the tools from the stochastic optimal
control theory that we will use later on in the paper.

2.1. Deterministic Optimal Control and Lagrange Mechanics

We start recalling some notions about deterministic optimal control and, in particu-
lar, we focus on Lagrangian-type optimal control problems, i.e., problems arising from
Lagrangian formulation of classical mechanics. More precisely, we consider a system of
controlled ODEs of the form

dXi
t = αi

t dt, (1)

where X = (X1, . . . , Xn) : [t0, T] → Rn is in C1([t0, T],Rn), t0, T ∈ R, with t0 6 T, are the
initial time and the final time horizon, respectively, and α = (α1, . . . , αn) ∈ C([t0, T],Rn) is
the control function. We want to maximize the following objective functional

J(t0, x, α) =
∫ T

t0

L(Xt0,x
s , αs)ds + g(Xt0,x

T ). (2)

where Xt0,x
t is the solution to the ODE (1) such that Xt0,x

t0
= x ∈ Rn.
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We suppose that there exists only one smooth function A : Rn ×Rn → Rn such that

n

∑
i=1
Ai(x, p)pi + L(x,A(x, p)) = sup

a∈Rn

{
n

∑
i=1

ai pi + L(x, a)

}
, (x, p) ∈ Rn ×Rn,

and also that, for any x ∈ Rn, the map A(x, ·) := (A1(x, ·), . . . ,An(x, ·)) is smoothly
invertible in all its variables as a function from Rn into itself. Define then the PDE

ut − H(x, ux) = ut −
(

n

∑
i=1
Ai(x, ux) uxi + L(x,A(x, ux))

)
= 0, (3)

where ux = (ux1 , . . . , uxn). Equation (3) is usually referred to as Hamilton–Jacobi equation
in the context of Lagrangian mechanics or Hamilton–Jacobi–Bellman equation in the context
of optimal control theory.

We state now the deterministic version of the so-called verification theorem.

Theorem 1. Let U(t, x) ∈ C1([t0, T]×Rn,R) be a solution to Hamilton–Jacobi Equation (3).
Then the optimal control problem (1) with objective functional (2) admits a unique solution, for any
x ∈ Rn, given, for every i = 1, . . . , n, by

αi
t = Ai(Xt,∇U(t, Xt)), for every t ∈ [t0, T].

Proof. See, e.g., Theorem 4.4 in [41].

Remark 1. It is important to note that, in the deterministic case and when U ∈ C1,2([t0, T]×Rn,R),
i.e., U is differentiable one time with respect to time t and two times with respect to space x ∈ Rn, the
function t 7→ αt is C1([t0, T],Rn) and it satisfies the Euler–Lagrange equations

d
dt

(∂ai L(Xt, αt))− ∂xi L(Xt, αt) = 0, (4)

where i = 1, . . . , n.

2.2. Classical Stochastic Optimal Control Problem

An optimal control problem consists of maximizing an objective functional, depending
on the state of a dynamical system, on which we can act through a control process.

Let K be a (convex) subset of Rd and fix a final time T > 0. Denote by W an
m-dimensional Brownian motion on a filtered probability space (Ω,F , (Ft)t≥0,P), where
(Ft)t≥0 is the natural filtration generated by W. We assume that the state of the system is
modeled by the following stochastic differential equation (SDE){

dXt = µ(t, Xt, αt)dt + σ(t, Xt, αt)dWt, t0 < t ≤ T,
Xt0 = x,

(5)

where µ : R+ ×Rn ×Rd → Rn and σ : R+ ×Rn ×Rd → Rn×m are measurable functions
that are also Lipschitz-continuous on the set K, i.e., there exists a constant C > 0, such that,
for every t ∈ R+, x, y ∈ Rn, a ∈ K,

|µ(t, x, a)− µ(t, y, a)|+ ‖σ(t, x, a)− σ(t, y, a)‖ 6 C|x− y|, (6)

where ‖σ‖2 = tr(σ∗σ).
We will also use the notation µ = (µi)i=1,...,n and σ = (σi

`)i=1,...,n,`=1,...,m.
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The control process α = (αs), appearing in (5), is a K-valued progressively measurable
process with respect to the filtration (Ft)t≥0. We denote by K the set of control processes α
such that

E
[∫ T

0
(|µ(t, 0, αt)|2 + ‖σ(t, 0, αt)‖2)dt

]
< +∞. (7)

We call Xt0,x
t , t ∈ [t0, T] the solution to the SDE (5).

Remark 2. Conditions (6) and (7) imply that, for any initial condition (t0, x) ∈ [0, T)×Rn and
for all α ∈ K, there exists a unique strong solution Xx,t0

t to the SDE (5) (see, e.g., Theorem 2.2 in
Chapter 4 of [45]).

Let L : R+ ×Rn ×Rd → R and g : Rn → R be two measurable functions, such that g
satisfies the quadratic growth condition |g(x)| 6 C(1 + |x|2), for every x ∈ Rn, for some
constant C independent of x.

For (t0, x) ∈ [0, T)×Rn, we denote by KL(t0, x) the subset of controls in K such that

E
[∫ T

t0

|L(t, Xt0,x
t , αt)|dt

]
< +∞.

We consider an objective function of the following form

J(t0, x, α) = E
[∫ T

t0

L(s, Xt0,x
s , αs)ds + g(Xt0,x

T )

]
.

We are now in position to introduce the stochastic optimal control problem.

Definition 1. Fixed (t0, x) ∈ [0, T) × Rn, the stochastic optimal control problem consists of
maximizing the objective function J(t0, x, α) over all α ∈ KL(t0, x) subject to the SDE (5). The
associated value function is then defined as

U(t0, x) = max
α∈KL(t0,x)

E
[∫ T

t0

L(t, Xt0,x
t , αt)dt + g(Xt0,x

T )

]
.

Given an initial condition (t0, x) ∈ [0, T)×Rn, we call α∗ ∈ KL(t0, x) an optimal control if

J(t0, x, α∗) = U(t0, x).

We call Hamilton–Jacobi–Bellman equation (HJB) the PDE∂t ϕ(t, x) + sup
a∈K
{La

t ϕ(t, x) + L(t, x, a)} = 0, (t, x) ∈ [t0, T)×Rn,

ϕ(T, x) = g(x), x ∈ Rn,
(8)

where La
t is the Kolmogorov operator associated with Equation (5), namely, for ψ ∈ C2(Rn),

La
t ψ(x) =

1
2

n

∑
i,j=1

ηij(t, x, a)∂xixj ψ(x) +
n

∑
i=1

µi(t, x, a)∂xi ψ(x), (t, x, a) ∈ R+ ×Rn × K,

with ηij defined, for every i, j ∈ {1, . . . , n}, as

ηij(t, x, a) = (σσ>)ij(t, x, a) =
m

∑
`=1

σi
`(t, x, a)σj

`(t, x, a), (t, x, a) ∈ R+ ×Rn × K.
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We also write, for x ∈ Rn, p ∈ Rn and q ∈ Rn×n,

H(t, x, p, q) = sup
a∈K

{
1
2

n

∑
i,j=1

ηij(t, x, a)qij +
n

∑
i=1

µi(t, x, a)pi + L(t, x, a)

}
,

so that the HJB Equation (8) can be written also in the following way{
∂t ϕ(t, x) + H(t, x,∇ϕ, D2 ϕ) = 0, (t, x) ∈ [t0, T)×Rn,
ϕ(T, x) = g(x), x ∈ Rn.

(9)

We state here the classical verification theorem.

Theorem 2. Let ϕ ∈ C1,2([0, T)×Rn) ∩ C0([0, T]×Rn) be a solution to the HJB Equation (9)
for t0 = 0, satisfying the following quadratic growth, for some constant C,

|ϕ(t, x)| 6 C(1 + |x|2), for all (t, x) ∈ [0, T]×Rn. (10)

Suppose that there exists a measurable function A∗(t, x), (t, x) ∈ [0, T)×Rn, taking values
in K, such that

(i) We have

0 = ∂t ϕ(t, x) + H(t, x,∇ϕ, D2 ϕ) = ∂t ϕ(t, x) + LA∗(t,x)
t ϕ(t, x) + L(t, x, A∗(t, x)),

(ii) The SDE
dXs = µ(s, Xs, A∗(s, Xs))ds + σ(s, Xs, A∗(s, Xs))dWs,

with initial condition Xt = x, admits a unique solution X∗s ,
(iii) The process A∗(s, X∗s ), s ∈ [t, T] lies in KL(t, x).

Then
ϕ(t, x) = U(t, x), (t, x) ∈ [0, T]×Rn,

and A∗(·, X∗· ) is an optimal control for the stochastic optimal control problem in Definition 1.

Proof. See, e.g., Theorem 3.5.2 in [42]. Some other references for the verification theorem
are also Theorem 4.1 in [41], Theorem 5.7 in [43], and Theorem 4.1 in [44].

Remark 3. The quadratic growth condition (10) is used in Theorem 2 only to guarantee that the
local martingale part of the semi-martingale decomposition of ϕ(t, Xt), namely, by Itô formula,

n

∑
i=1

m

∑
`=1

∫ t

0
σi
`(s, Xs, A∗(s, Xs))∂xi ϕ(s, Xs)dW`

s , (11)

is in L1 and a martingale (and not only a local martingale). This means that the statement of
Theorem 2 holds assuming only that (11) is a L1 martingale, i.e., without condition (10).

2.3. Stochastic Hamilton–Jacobi–Bellman Equation

The present section generalizes the aforementioned Hamilton–Jacobi–Bellman equa-
tion to its stochastic counterpart. Let us first recall the Itô–Kunita formula.

Theorem 3 (Itô–Kunita formula). Let F(t, x), (t, x) ∈ [0, T] × Rn be a random field that is
continuous in (t, x) almost surely, such that

(i) For every t ∈ [0, T], F(t, ·) is a C2-map from Rn into R, P-a.s.,
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(ii) For each x ∈ Rn, F(·, x) is a continuous semi-martingale P-a.s., and it satisfies

F(t, x) = F(0, x) +
m

∑
j=1

∫ t

0
f j(s, x)dY j

s , for every (t, x) ∈ [0, T]×Rn, a.s.,

where Y j
s , j = 1, . . . , m, are m continuous semi-martingales, f j(s, x), x ∈ Rn, s ∈ [0, T], are

random fields that are continuous in (s, x) and satisfy the following properties:
(a) For every s ∈ [0, T], f j(s, ·) is a C2-map from Rn to R, P-a.s.,
(b) For every x ∈ Rn, f j(·, x) is an adapted process.

Let Xt = (X1
t , . . . , Xn

t ) be continuous semi-martingales. Then we have, for t ∈ [0, T],

F(t, Xt) = F(0, X0) +
m

∑
j=1

∫ t

0
f j(s, Xs)dY j

s +
n

∑
i=1

∫ t

0
∂xi F(s, Xs)dXi

s

+
m

∑
j=1

n

∑
i=1

∫ t

0
∂xi f j(s, Xs)d[Y j, Xi]s +

n

∑
i,k=1

∫ t

0
∂xixk F(s, Xs)d[Xi, Xk]s,

where [·, ·]s stands for the quadratic variation of semi-martingales. Furthermore, if F ∈ C3 and
f j ∈ C3, P-a.s., then we have, for i = 1, . . . , n,

∂xi F(t, x) = ∂xi F(0, x) +
m

∑
j=1

∫ t

0
∂xi f j(s, x)dY j

s , for every (t, x) ∈ [0, T]×Rn, P-a.s.

Proof. See, e.g., the article [46] or the book [47], both by H. Kunita.

Sticking, where possible, with the notation introduced in Section 2.2, we consider a
stochastic optimal control problem where also the functions L, g, µ, and σ are random. More
precisely, they depend also on ω ∈ Ω in a predictable way, namely, L(t, x, a, ·), g(x, ·), µ(t, x, ·),
and σ(t, x, ·) are Ft-measurable, for any (t, x, a) ∈ R+ ×Rn × K. In order to distinguish them
from the functions in the previous section and recall that the following are stochastic terms, we
write also

LS(t, x, a) = L(t, x, a, ·), gS(x) = g(x, ·).

We want then to maximize the objective functional

E
[∫ T

t0

LS(t, Xt, αt)dt + gS(XT)

]
, (12)

where X solves the SDE{
dXt = µ(t, Xt, αt, ω)dt + σ(t, Xt, αt, ω)dWt, t0 < t < T,
Xt0 = x.

(13)

and α ∈ KL.
Let us introduce, in a completely analogous way as in the previous section, the

value function

U(t, x, ω) = max
α∈KL

E
[∫ T

t
LS(s, Xs, αs)ds + gS(XT)

∣∣∣∣Ft

]
.

From now on, we may omit the explicit dependence on ω ∈ Ω of the functions.
Then, for any fixed x, U(t, x) is an Ft-adapted process but, a priori, it is not of bounded
variation. We can anyway expect that it is a continuous semi-martingale, and therefore, by
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the representation theorem for semi-martingales and martingales (see, e.g., Section IV.31
and Section IV.36 in [48]), that it can be written as follows,

U(t, x) = ΓT(x)− Γt(x)−
∫ T

t
Ys(x)dWs, x ∈ Rn, 0 6 t 6 T,

where, for every x ∈ Rn, Γt(x) and Yt(x) are Ft-adapted processes and Γt(x) is of bounded
variations. In this case, if Γt(x) and Yt(x) are almost surely continuous in (t, x), Γt(x) is
differentiable with respect to t, and both of them are sufficiently smooth with respect to x,
then the pair (U, Y) should satisfy a stochastic Hamilton–Jacobi–Bellman equation (SHJB).

More precisely, we say that (ϕ, Ψ) solves the SHJB related with the optimal control
problem (12) and (13) if (ϕ, Ψ) satisfies the following backward stochastic partial differen-
tial equationdϕt(x) + HS(r, x,∇ϕ, D2 ϕ,∇Ψ)dt =

m

∑
`=1

Ψ`
t (x)dW`

t , (t, x) ∈ [t0, T)×Rn,

ϕT(x) = g(x), x ∈ Rn,
(14)

where

HS(t, x, ux, uxx, ψx) ≡ H(t, x, ux, uxx, ψx, ω) = sup
a∈K
HS(t, x, ux, uxx, a, ψx),

and

HS(t, x, ux, uxx, a, ψx) =
n

∑
i=1

µi(t, x, a, ω)uxi +
1
2

n

∑
i,j=1

m

∑
`=1

σi
`(t, x, a, ω)σ

j
`(t, x, a, ω)uxixj

+
n

∑
i=1

m

∑
`=1

σi
`(t, x, a, ω)ψ`

xi + LS(t, x, a),

with ψx = (ψ`
xi )i=1,...,n,`=1,...,m ∈ Rn×m. See, e.g., Section 3.1 in [33] for more details about

the derivation of Equation (14) and Section 4 in the same reference for results concerning
the well-posedness of such an equation.

We state here the verification theorem, which tells us that a sufficiently smooth solution
of the SHJB equation coincides with the value function v.

Theorem 4. Let (ϕ, Ψ) be a smooth solution of the SHJB Equation (14) with t0 = 0 and assume
that the following conditions hold:

(i) For each t ∈ [0, T], x 7→ (ϕt(x), Ψt(x)) is a C2-map from Rn into R×Rm, P-a.s.,
(ii) For each x ∈ Rn, t 7→ (ϕt(x), Ψt(x)) and t 7→ (∇ϕt(x), D2 ϕt(x),∇Ψt(x)) are continuous

Ft-adapted processes.

Suppose further that there exists a predictable admissible control A∗(t, x, ω) such that

HS(t, x,∇ϕ, D2 ϕ,∇Ψ) = HS(t, x,∇ϕ, D2 ϕ, A∗(t, x, ω),∇Ψ),

and that it is regular enough so that the SDE (13) is well-posed with solution X. Then (ϕ, Ψ) =
(V, Y) and moreover, for any initial data (0, x) with x ∈ Rn, A∗(t, Xt, ω) maximizes the objective
function U.

Proof. See Section 3.2 in [33].

Remark 4. Under suitable regularity conditions on µ, σ, LS, and gS, it is possible to prove that the
SHJB Equation (14) admits a unique solution satisfying the hypotheses of Theorem 4. A rigorous
proof of this fact can be found in Section 4 of [33]. For further developments on SHJB equations and
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the related stochastic optimal control problems we refer the reader to, e.g., [49–52], as well as the
already mentioned paper by Peng [33].

3. Solutions of PDEs via Contact Symmetries

In this section, we recall some basic facts concerning the theory of symmetries on
which our results are based, referring to [2,3,53–55] for a complete treatment of these topics.
We start with a formal introduction on jet spaces (for an extended introduction to the
subject see, e.g., [56,57]), and then proceed with contact symmetries and their applications
in solving PDEs. Despite the fact that these results are well-known, we insert here a small
survey for the ease of the reader, as well as we introduce the notation that will be adopted
in the rest of the paper.

3.1. Jet Spaces and Jet Bundles

The jet space is a generalization of the notion of tangent bundle of a manifold. Let M
and N be two open subsets of Rm and Rn, respectively, and consider a smooth function
f : M → N. Take a standard coordinate system x = (x1, . . . , xm) in M and let u =
(u1, . . . , un) = f (x) ∈ N. We can then consider the k-th prolongation u(k) = pr(k) f (x), that
is defined by the relations uj

xi = ∂xi f j(x), uj
xixl = ∂xixl f j(x), . . ., up to order k. For example,

if m = 2 and n = 1, then pr(2) f (x1, x2) is given by

(u; ux1 , ux2 ; ux1x1 , ux1x2 , ux2x2) = ( f ; ∂x1 f , ∂x2 f ; ∂x1x1 f , ∂x1x2 f , ∂x2x2 f )(x1, x2).

The k-th prolongation can also be looked at as the Taylor polynomial of degree k for
f at the point x. The space whose coordinates represent the independent variables, the
dependent variables and the derivatives of the dependent variables up to order k is called
the k-th order jet space of the underlying space N ×M, and we denote it by Jk(M, N). It is
a smooth vector bundle on M with projection πk,−1 : Jk(M, N)→ M given by

πk,−1(x, u, ux, uxx, . . .) = x.

More explicitly, Jk(M, N) = M× N × N(1) × · · · × N(k), where N(i), is the space of
i-th order derivatives of u with respect to x. It is clear that N(i) ⊆ Rni with

ni =

(
m + i− 1

i

)
.

To any function f ∈ Ck(M, N), where Ck(M, N) is the infinite-dimensional Fréchet
space of k times differentiable functions on M taking values in N, we associate a continuous
section of the bundle (Jk(M, N), M, πk,−1) in the following way

f 7→ Dk( f )(x) = (x, u = f (x), ux = ∇ f (x), uxx = D2 f (x), . . . , Dk f (x)),

where Di f (x) is the vector collecting all the i-th order derivatives of f with respect to x.
In this setting, a differential equation is a sub-manifold ∆E ⊂ Jk(M, N). For example, in
the scalar case N = R, we usually consider ∆E as the null set of some regular functions,
i.e., ∆E = {Ei(x, u, ux, uxx, . . .) = 0, i ∈ {1, . . . , p}}.

Definition 2. Consider a (finite) set Ei : Jk(M, N)→ R, for i = 1, ..., p where p ∈ N and p > 0,
of smooth functions defining a sub-manifold ∆E = {Ei(x, u, ux, uxx, . . .) = 0, i ∈ {1, . . . , p}} of
Jk(M, N). We say that a smooth function f : M→ N is a solution to the equation E (represented
by the sub-manifold ∆E ) if, for any x ∈ M, we have Dk f (x) ∈ ∆E . The set of all solutions to
equation E will be denoted by SE .
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For instance, in the previous case where N = R and ∆E = {Ei(x, u, ux, . . .) = 0, i ∈
{1, . . . , p}}, f is a solution to equation E if Ei(x, f (x),∇ f (x), . . .) = 0, for every i = 1, . . . , p,
x ∈ M.

Remark 5. For technical reasons, it is usually not possible to consider generic equations E (cor-
responding to generic sub-manifold ∆E ⊂ Jk(M, N)). In the following, we always consider
non-degenerate systems of differential equations in the sense of Definition 2.70 in [2]. This condition
assures that, for each fixed x0 ∈ M and each set of derivatives (u0, u0

x, u0
xx, . . .), there exists a solu-

tion to the equation defined in a neighborhood of x0 with the prescribed derivatives (u0, u0
x, u0

xx, . . .)
at the point x0. Since the precise formulation of this condition is quite technical and the evolution
equations considered in Section 4 always satisfy such an assumption, we refer to Section 2.6 of [2]
for complete details.

3.2. Contact Transformations

We want to introduce a class of transformations induced by diffeomorphisms of
Jk(M, N). For simplicity, we consider the case k = 2, M ⊂ Rn and N = R. Consider a
diffeomorphism Φ : J2(M, N)→ J2(M, N) given by the following relations

x̃i = Φxi
(x, u, ux, uxx),

ũ = Φu(x, u, ux, uxx),

ũxi = Φuxi (x, u, ux, uxx),

ũxixj = Φu
xi xj (x, u, ux, uxx).

Hereafter, we use the notation Φx = (Φx1
, · · · , Φxn

), Φux = (Φux1 , · · · , Φuxn ) and
Φuxx = (Φu

xi xj )|i,j=1,...,n.
We now aim to define a transformation FΦ on the space of smooth functions induced

by the map Φ on the jet space. Let U ∈ C∞(M, N) and consider the map CU,Φ : M → M
given by

CU,Φ(x) = Φx(x, U(x),∇U(x), D2U(x)).

Let FΦ ⊂ C∞(M, N) be the subset of smooth functions U ∈ C∞(M, N) such that CU,Φ
is a diffeomorphism from M into itself.

Definition 3. We say that the diffeomorphism Φ generates the (nonlinear) operator FΦ on the
space of functions FΦ, if there is a map FΦ : FΦ → C∞(M, N) such that

FΦ(U)(x) = Φu(C−1
U,Φ(x), U(C−1

U,Φ(x)),∇U(C−1
U,Φ(x)), D2U(C−1

U,Φ(x))),

∂xi FΦ(U)(x) = Φuxi (C−1
U,Φ(x), U(C−1

U,Φ(x)),∇U(C−1
U,Φ(x)), D2U(C−1

U,Φ(x))),

∂xixj FΦ(U)(x) = Φu
xi xj (C−1

U,Φ(x), U(C−1
U,Φ(x)),∇U(C−1

U,Φ(x)), D2U(C−1
U,Φ(x))).

Not every diffeomorphism Φ : J2(M, N)→ J2(M, N) generates an operator FΦ on the
space of functions FΦ. For example, consider M = R and the map Φx(x, u, ux, uxx) = λx,
Φu(x, u, ux, uxx) = u, Φux (x, u, ux, uxx) = ux, and Φuxx (x, u, ux, uxx) = uxx, where λ > 0.
In this case, for any U ∈ C∞(M, N), the map CU,Φ is given by CU,Φ(x) = λx and, thus, it
does not depend on U and it is always a diffeomorphism from R into itself, since λ 6= 0.
This implies that FΦ = C∞(M, N) and also that, if the map FΦ exists, then it must satisfy

FΦ(U) = U(λ−1x),

for any U ∈ C∞(M, N). On the other hand, we have

∂xFΦ(U) = λ−1U′(λ−1x) 6=
6= U′(λ−1x) = Φux (C−1

U,Φ(x), U(C−1
U,Φ(x)),∇U(C−1

U,Φ(x)), D2U(C−1
U,Φ(x))).
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This simple counterexample shows that a diffeomorphism Φ : J2(M, N)→ J2(M, N)
must satisfy some additional conditions in order to generate an operator FΦ. For this reason,
we introduce the following definition.

Definition 4. A diffeomorphism Φ : J2(M, N)→ J2(M, N) is said to be a contact transformation
if it generates a (nonlinear) operator FΦ in the sense of Definition 3.

It is possible to give a nice geometric characterization of the set of contact transforma-
tions. From now on, we write Λ1 Jn(M, N) for the vector space of 1-forms on Jn(M, N). In
particular, consider the following 1-forms,

κ =du−
n

∑
i=1

uxi dxi, (15)

κxi =duxi −
n

∑
j=1

uxixj dxj.

We denote by C ⊂ Λ1 J2(M, N) the contact structure, also called Cartan distribution
in [56], which is generated by

C = span{κ, κxi , i = 1, ..., n}.

Theorem 5. A diffeomorphism Φ : J2(M, N) → J2(M, N) is a contact transformation in the
sense of Definition 4 if and only if it preserves the contact structure C, that is,

Φ∗(C) = C,

where Φ∗ is the pull-back of differential forms on J2(M, N) induced by Φ.

Proof. See, e.g., Chapter 2 in [56], Section 4 in [53], Chapter 21 in [3], and the refer-
ences therein.

Remark 6. The contact transformation Φ is uniquely determined by its action on J1(M, N). In
particular, Φx, Φu, and Φux depend only on (x, u, ux) and they do not depend on uxx (see, e.g.,
Chapter 2 in [56]).

Remark 7. In contact geometry, a contact structure on a (2n+ 1)-dimensional manifoldM is a 1-form
ζ, which is maximally non-integrable, namely, ζ ∧ (dζ)n 6= 0, and the contact transformations are the
diffeomorphisms Ψ ofM such that Ψ∗(ζ) = f · ζ, for some f ∈ C∞(M,R) (see, e.g., [58,59] for an
introduction to the subject and [60] for an historical overview). This definition is satisfied by J1(M,R)
with the 1-form ζ = κ defined in (15).

In the study of the geometry of jet spaces (see, e.g., Chapter 6 of [57]), the term “contact
structure” is often used to express the set of forms C. This custom is due to the fact that, as explained
in Remark 6, the contact transformations are extensions of diffeomorphisms on J1(M, N), i.e.,
the set of transformations considered here is in one-to-one correspondence with the one usually
considered in contact geometry.

In the following, we will not consider just a single contact transformation but one-
parameter groups of contact transformations Φλ, which means that Φ· : R× J2(M, N)→
J2(M, N) is C∞, Φλ is a contact transformation for each λ ∈ R, Φ0(x, u, ux, uxx) =
(x, u, ux, uxx), and, for each λ1, λ2 ∈ R,

Φλ1 ◦Φλ2 = Φλ1+λ2 .
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In general, a one-parameter group of diffeomorphisms ΦY,λ, where λ ∈ R, is generated
by a vector field Y ∈ TJ2(M, N), i.e., belonging to the tangent bundle of J2(M, N), which
in local coordinates has the expression

Y =
n

∑
i=1

Yxi
(x, u, ux, uxx)∂xi + Yu(x, u, ux, uxx)∂u

+
n

∑
i=1

Yuxi (x, u, ux, uxx)∂uxi +
n

∑
i,j=1

Yu
xi xj (x, u, ux, uxx)∂u

xi xj ,
(16)

by the following relations

∂λΦxi

Y,λ(x, u, ux, uxx) = Yxi ◦Φλ(x, u, ux, uxx),

∂λΦu
Y,λ(x, u, ux, uxx) = Yu ◦Φλ(x, u, ux, uxx),

∂λΦ
uxi
Y,λ(x, u, ux, uxx) = Yuxi ◦Φλ(x, u, ux, uxx),

∂λΦ
u

xi xj

Y,λ (x, u, ux, uxx) = Yu
xi xj ◦Φλ(x, u, ux, uxx), (17)

for any λ ∈ R and (x, u, ux, uxx) ∈ J2(M, N). It is useful to introduce the following
natural notion.

Definition 5. A vector field Y (of the form (16)) on J2(M, N) is called an infinitesimal contact
transformation if it generates (through Equation (17)) a one-parameter group of diffeomorphisms
Φλ of contact transformations.

The following theorem characterizes all the infinitesimal contact transformations
on J2(M, N).

Theorem 6. A vector field Y on J2(M, N) is an infinitesimal contact transformation (in the sense
of Definition 5) if and only if there exists a unique smooth map Ω : J1(M, N) → R such that
Y = YΩ, where YΩ is a vector field on J2(M, N) defined as

YΩ = −
n

∑
i=1

∂uxi Ω∂xi +

(
Ω−

n

∑
i=1

uxi ∂uxi Ω

)
∂u +

n

∑
i=1

(∂xi Ω + uxi ∂uΩ)∂uxi

+
n

∑
i,j,k,`=1

(
∂xixj Ω + uxj ∂xiuΩ + uxjxk ∂xiuxk

Ω + uxi ∂xjuΩ

+ uxi uxj ∂uuΩ + uxi uxjxk ∂uuxk Ω + uxixj ∂uΩ

+ uxixk ∂xjuxk
Ω + uxixk uxj ∂uxk uΩ + uxixk uxjx`∂uxk ux`

Ω
)

∂u
xi xj .

(18)

Proof. The proof can be found in Chapter 21 of [3] and references therein.

Remark 8. We say that a vector field of the form YΩ satisfying the hypotheses of Theorem 6 is the
infinitesimal contact transformation generated by the (contact generating) function Ω. Under this
terminology, Theorem 5 guarantees that any infinitesimal contact transformation is generated in a
unique way by some smooth function Ω : J1(M, N)→ R.

There is a special subset of vector fields of the type (18) arising from coordinate
transformations involving only the dependent and independent variables (x, u).
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Definition 6. We say that YΩLie, f ,g is a (projected) Lie point transformation if it is a contact
transformation of the form

YΩLie, f ,g =
n

∑
i=1

f i(x)∂xi + g(x, u)∂u +
n

∑
i=1

Yuxi (x, u, ux)∂uxi +
n

∑
i,j=1

Yuxi xj (x, u, ux, uxx)∂uxi xj , (19)

where f i ∈ C∞(M,R), g ∈ C∞(J0(M, N),R), Yuxi ∈ C∞(J1(M, N),R) and
Yu

xi xj ∈ C∞(J2(M, N),R).

Remark 9. It is simple to see that a Lie point transformation YΩLie, f ,g can be reduced to a standard
vector field Ỹ = ∑i f i(x)∂xi + g(x, u)∂u on J0(Rn,R), i.e., Ỹ is the generator of a one-parameter
group of transformations involving only the dependent and independent variables (x, u).

Remark 10. Another important property of Lie point transformations is the following. Denoting
by ΦLie, f ,g,λ, where λ ∈ R, the one-parameter group generated by the Lie point transformation
YΩLie, f ,g , we have that, for any λ ∈ R, the domain FΦLie, f ,g,λ of the nonlinear operator FΦLie, f ,g,λ

generated by ΦLie, f ,g,λ is the whole C∞(M, N) = FΦLie, f ,g,λ .

For what follows, we introduce the (formal) operators Dxi : C∞(Jk(M, N)) →
C∞(Jk+1(M, N)) given by

Dxi = ∂xi + uxi ∂u +
n

∑
j=1

uxixj ∂u
xj + . . . +

n

∑
j1≥...≥jp=1

uxj1 ···xj` xi ∂u
xj1 ···xj`

+ . . . (20)

In a similar way, we write Dxixj(·) = Dxi (Dxj(·)), Dxixjx`(·) = Dxi (Dxj(Dx`(·))), etc.

We can characterize more precisely the general form of Lie point transformations.

Theorem 7. The vector field YΩLie, f ,g is a (projected) Lie point transformation if and only if it is
generated by a function of the form

ΩLie, f ,g(x, u, ux) = g(x, u)−
n

∑
i=1

f i(x)uxi , (21)

namely, YΩLie, f ,g has the following expression

YΩLie,g,f
:=

n

∑
i=1

f i(x)∂xi + g(x, u)∂u +
n

∑
i,j=1

(−Dxi f j(x)uxj +Dxi (g))∂uxi

+
n

∑
i,j,k=1

(−Dxixj( f k)uxk −Dxi ( f k)uxkxj +Dxixj(g))∂u
xi xj .

Proof. The theorem is a direct application of Theorem 6 to vector fields of the form (19).

If n = 1, and the coordinate system of J0(R,R) is given by (x, u), some examples of
Lie point transformations are:

• The dilation of independent variable x, i.e., Ỹ = x∂x (see the notation in Remark 9),
related to the generator function Ω = −xux and generating the one parameter group
defined by

Φx
λ(x, u) = eλx Φu

λ(x, u) = u

Φux
λ (x, u, ux) = e−λux Φuxx

λ (x, u, ux, uxx) = e−2λuxx.
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• The dilation of dependent variable u, namely, Ỹ = u∂u related to the generator
function Ω = u and generating the one parameter group defined by

Φx
λ(x, u) = x Φu

λ(x, u) = eλu

Φux
λ (x, u, ux) = eλux Φuxx

λ (x, u, ux, uxx) = eλuxx.

We conclude this section providing the definition of symmetry of a differential equation.

Definition 7. A contact transformation Φ : J2(M, N) → J2(M, N) is a (contact) symmetry of
the differential equation E if, for any solution U ∈ C∞(M, N) ∩ FΦ to the equation E , also FΦ(U)
is a solution to E , where FΦ and FΦ are the operator generated by the contact transformation Φ
and the domain of FΦ, respectively (see Definition 3).

We say that an (infinitesimal) contact transformation YΩ is an (infinitesimal contact) sym-
metry of the differential equation E if the one-parameter group ΦYΩ ,λ generated by YΩ is a set of
symmetries of the equation E .

Remark 11. With an abuse of language, we say that the function Ω ∈ C∞(J1(M, N),R) is a
contact symmetry of the equation E if the corresponding contact vector field YΩ is a symmetry of E .

Remark 12. If Y is a Lie point transformation and it is a contact symmetry of the equation E , then
we say that Y is a Lie point symmetry of the equation E .

It is possible to give a completely geometric characterization of the contact symmetries
of a differential equation E .

Theorem 8 (Determining equations). A contact transformation Φ is a symmetry of the equa-
tion E represented by the sub-manifold ∆E ⊂ J2(M, N) of the form

∆E = {Ei(x, u, ux, uxx) = 0, i ∈ {1, . . . , p}},

where p ∈ N, p > 0 and Ei ∈ C∞(J2(M, N),R), if and only if

Φ(∆E ) = ∆E .

The infinitesimal contact transformation YΩ is a symmetry of the non-degenerate differential
equation E (see Remark 5 for the definition of non-degenerate differential equation) if and only if

Y(Ei(x, u, ux, uxx))|∆E = 0, (22)

where i = 1, . . . , p.

Proof. The proof is given in Theorem 2.27 and Theorem 2.71 in [2] for the case of Lie
point symmetries that are diffeomorphisms of Jk(M, N), for k ≥ 0. Since the contact
transformations are diffeomorphism of Jh(M, N), for any h ≥ 1 (see, e.g., Chapter 21 of [3]),
the case of contact transformations can be proved using the same methods.

3.3. Symmetries and Classical Noether Theorem

Let us discuss here the classical Noether theorem in the Lagrangian mechanics setting
described in Section 2.1. Heuristically, the Noether theorem says that to any infinitesimal
transformation leaving invariant the optimal control problem, namely Equation (1) and the
Lagrangian L, a constant of motion is associated.
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More precisely, let Yx,a be a vector field in Rn ×Rn transforming the variables xi and
ai of Equation (1) and the Lagrangian L. We suppose that Yx,a is “projected” with respect
to the variables xi, that is,

Yx,a =
n

∑
i=1

(
f i(x)∂xi + gi(x, a)∂ai

)
. (23)

If we want the projected vector field (23) to be a symmetry of Equation (1), then we
need that

gi(x, a) =
n

∑
j=1

∂xj f i(x)aj. (24)

If we also require that L is invariant with respect to the flow of Yx,a, then we must have

Yx,a(L)(x, a) =
n

∑
i=1

f i(x)∂xi L(x, a) +
n

∑
i,j=1

∂xj f i(x)aj∂ai L(x, a) = 0. (25)

So we say that Yx,a is a symmetry of the optimal control problem of Section 2.1 if and
only if conditions (24) and (25) hold.

Theorem 9 (Noether theorem). Let Yx,a be a symmetry of the Lagrangian L according with
Equation (25). Then, supposing the existence of a C1 optimal control αt, we have that

n

∑
i=1

f i(Xt)∂ai L(Xt, αt) (26)

is constant with respect to time t ∈ [t0, T].

Proof. Let us compute the derivative with respect to time of (26), then, by Euler–Lagrange
Equation (4), we have

d
dt

(
n

∑
i=1

f i(Xt)∂ai L(Xt, αt)

)
=

n

∑
i,j=1

∂xj f i(Xt)∂ai L(Xt, αt)
dX j

t
dt

+
n

∑
i=1

f i(Xt)
d
dt

(∂ai L(Xt, αt))

=
n

∑
i,j=1

[∂xj f i(Xt)α
j
t∂ai L(Xt, αt) + f i(Xt)(∂xi L(Xt, αt))],

which is zero as a consequence of Equation (25).

It is possible to give an equivalent formulation of Theorem 9 using the Lie point
symmetries of Hamilton–Jacobi equation.

Theorem 10 (Noether theorem, Hamilton–Jacobi version). Let Ω(x, ux) = ∑n
i=1 f i(x)uxi be

a contact symmetry of the Hamilton–Jacobi Equation (3). Then, if U ∈ C1,2([t0,, T]×Rn,R) is a
solution to Equation (3), we have that

Ω(Xt,∇U(Xt)) =
n

∑
i=1

f i(Xt)∂xi U(Xt), (27)

where Xt is the solution to Equation (1) with αi
t = Ai(Xt,∇U(Xt)) (see Section 2 for the definition

of the map A), is constant with respect to time t ∈ [t0, T].

Lemma 1. YΩ is a contact symmetry of the Hamilton–Jacobi Equation (3) if and only if

n

∑
i=1

(
∂xi Ω ∂uxi H − ∂uxi Ω ∂xi H

)
= 0. (28)
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Proof. It is a consequence of Equation (18) and Definition 7. See, e.g., Section 21.2 in [3].

Proof of Theorem 10. See the proof of Theorem 12 below, where the statement is proven
in the general stochastic case.

Remark 13. The two formulations of the Noether theorem given by Theorems 9 and 10 are equiv-
alent in the sense that Yx,a = ∑n

i,j=1( f i(x)∂xi + ∂xj f i(x, a)aj∂ai ) is a symmetry of the optimal
control problem if and only if Ω is a contact symmetry of the related Hamilton–Jacobi equation,
namely, Equation (28) holds. Furthermore, if we choose the optimal control αi

t to be equal to
Ai(Xt,∇U(Xt)), then the two conserved quantities (26) and (27) are equal.

4. Noether Theorem for Stochastic Optimal Control
4.1. The Case of Deterministic HJB Equation

Considering M = R+ ×Rn and denoting the first variable by t and the other indepen-
dent variables by xi, for i = 1, . . . , n, for the Hamilton–Jacobi–Bellman equation we have
that ∆E is described by the equation

ut + max
a∈K

{
1
2

n

∑
i,j=1

ηij(t, x, a)uxixj +
n

∑
i=1

µi(t, x, a)uxi + L(t, x, a)

}
= 0. (29)

Equation (29) is a special kind of evolution equation since it has the form

ut + H(t, x, u, ux, ux,x) = 0, (30)

for some smooth function H ∈ C2(R × J2(Rn,R)), where ux = (ux1 , . . . , uxn), and
uxx = (uxixj)i,j=1,...,n. In this case, it is convenient to choose a generating function of
the form

Ω(t, x, u, ux). (31)

Remark 14. It is important to notice that, for a generic contact symmetry on J2(M,R) = J2(R+×
Rn,R), the generating function has the form

Ω̃(t, x, u, ut, ux), (32)

depending also on the variable ut, which represents the time derivative. Choosing a generating
function of the form (31) instead of the form (32) means to consider contact transformations
that do not change the time variable t. The main reason is that the time variable in stochastic
equations plays a peculiar role and cannot be changed in the same way as the spacial variable x.
Nevertheless, in [24,25,29] also a special kind of time change has been considered corresponding to
the generating function

Ω̃ = f (t)ut + ΩLie, f ,g(t, x, u, ux), (33)

where f ∈ C∞(R+,R), and ΩLie, f ,g(t, x, u, ux) is the generator of a Lie point transformation, see
Equation (21) (see also Remark 15 for a further discussion of this point).

Theorem 11. Consider an evolution PDE of the form (30). An infinitesimal contact transformation
generated by the function Ω of the form (31) is a contact symmetry for Equation (30) if and only if

∂tΩ− H∂uΩ +
n

∑
i,j=1

(
Dxi Ω∂uxi H +Dxixj Ω∂u

xi xj H −Dxi H∂uxi Ω
)
= 0, (34)

where Dxi are defined in Equation (20) and Dxixj · = Dxi (Dxj(·)).

Proof. The statement follows directly from Theorems 6 and 8 (in particular
Equations (18) and (22)).
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Let us introduce
Ot = Ω(t, Xt, U(t, Xt),∇U(t, Xt)),

where Xt is a solution to Equation (5) with respect to an optimal control A∗t .

Assumption 1. There exists at least one measurable function A(t, x, ux, uxx) such that

A(t, x, ux, uxx) ∈ arg maxH(t, x, ux, uxx, ·),

where

H(t, x, ux, uxx, a) =
n

∑
i=1

µi(t, x, a)uxi +
1
2

n

∑
i,j=1

m

∑
`=1

σi
`(t, x, a)σj

`(t, x, a)uxixj + L(t, x, a).

As a consequence of Assumption 1, we can choose the process

αt = A(t, Xt,∇U(t, Xt), D2U(t, Xt))

to be the optimal control provided that the solution U to Equation (9) is at least C2.
The next result is our first stochastic generalization of Noether theorem.

Theorem 12. Let Assumption 1 hold true. Suppose that the solution U to Equation (9) is continu-
ously differentiable with respect to time and C2 with respect to x. If Ω is a contact symmetry of
Equation (9), then Ot is a local martingale.

Remark 15. The works [24,25,29] present a Noether theorem involving a time change and a Lie
point transformation with a generator of the form (33) for an optimal control system with affine
type control and an objective function with quadratic dependence from the control. More precisely,
they proved that, if Ω̃ of the form (33) is a symmetry of the HJB equation, then the process

Ôt = Ω̃(t, Xt, U(t, Xt), ∂tU(t, Xt),∇U(t, Xt))

= − f (t)H(t,∇U(t, Xt), D2U(t, Xt)) + ΩLie, f ,g(t, Xt, U(t, Xt),∇U(t, Xt)),
(35)

is a local martingale. The presence of some time invariance was essential in the papers [21,28]
for extending the concept of integrable systems to the stochastic framework. We expect that the
martingality of the process (35) holds also in the general setting presented here. Since it is not
completely clear what the role of time change is in our setting and if the conservation of (35) holds
for more general time changes, we prefer to postpone this analysis to some later works.

From now on we take H as in Section 2.2, namely,

H(t, x, ux, uxx) = sup
a∈K
H(t, x, ux, uxx, a).

In order to prove Theorem 12, we anticipate the following result.

Lemma 2. We have that

∂uxi H = µi(t, x,A(t, x, ux, uxx)),

∂u
xi xj H =

1
2

m

∑
`=1

σi
`(t, x,A(t, x, ux, uxx))σ

j
`(t, x,A(t, x, ux, uxx)).

Proof. In the case where µ, σ, and A are C1 in all their variables, the result follows from
the fact that

∂aiH(t, x, ux, uxx,A(t, x, ux, uxx)) = 0.
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The general case is a consequence of Assumption 1 and the envelope theorem. For the
latter we refer the reader to, e.g., [61,62].

Proof of Theorem 12. We compute the differential of Ot using Itô formula, to get

dOt = dΩ(t, Xt, U(t, Xt),∇U(t, Xt))

= ∂tΩ(t, Xt, U(t, Xt),∇U(t, Xt))dt + ∂uΩ(t, Xt, U(t, Xt),∇U(t, Xt))dU(t, Xt)

+
n

∑
i=1

∂xi Ω(t, Xt, U(t, Xt),∇U(t, Xt))dXi
t

+
n

∑
i=1

∂uxi Ω(t, Xt, U(t, Xt),∇U(t, Xt))d∂xi U(t, Xt)

+
1
2

n

∑
i,j=1

∂xixj Ω(t, Xt, U(t, Xt),∇U(t, Xt))d[Xi, X j]t

+
1
2

∂uuΩ(t, Xt, U(t, Xt),∇U(t, Xt))d[U(·, X·), U(·, X·)]t

+
1
2

n

∑
j=1

∂uxj Ω(t, Xt, U(t, Xt),∇U(t, Xt))d[U(·, X·), X j]t

+
1
2

n

∑
j=1

∂uu
xj Ω(t, Xt, U(t, Xt),∇U(t, Xt))d[∂xj U(·, X·), U(·, X·)]t

+
1
2

n

∑
i,j=1

∂uxi xj Ω(t, Xt, U(t, Xt),∇U(t, Xt))d[∂xi U(·, X·), X j]t

+
1
2

n

∑
i,j=1

∂uxi u
xj Ω(t, Xt, U(t, Xt),∇U(t, Xt))d[∂xi U(·, X·), ∂xj U(·, X·)]t.

Since U ∈ C2,3([0, T]×Rn,R), we also have

dU(t, Xt) = ∂tU(t, Xt)dt +
n

∑
i=1

∂xi U(t, Xt)dXi
t +

1
2

n

∑
i,j=1

∂xi xj U(t, Xt)d[Xi, X j]t, (36)

d∂xi U(t, Xt) = ∂xi ,tU(t, Xt)dt +
n

∑
j=1

∂xi xj U(t, Xt)dX j
t +

1
2

n

∑
j,k=1

∂xi xj xk U(t, Xt)d[X j, Xk]t. (37)

Exploiting Equations (36) and (37), the fact that Xt is solution to (5), and the relations

d[Xi, X j]t =
m

∑
`=1

σi
`(t, Xt, αt)σ

j
`(t, Xt, αt)dt,

d[U(·, X·), Xi]t =
n

∑
j=1

m

∑
`=1

∂xj U(t, Xt)σ
j
`(t, Xt, αt)σ

i
`(t, Xt, αt)dt,

d[U(·, X·), U(·, X·)]t =
n

∑
i,j=1

m

∑
`=1

∂xj U(t, Xt)∂xi U(t, Xt)σ
j
`(t, Xt, αt)σ

i
`(t, Xt, αt)dt,

d[U(·, X·), ∂xi U(·, X·)]t =
n

∑
k,j=1

m

∑
`=1

∂xj U(t, Xt)∂xixk U(t, Xt)σ
j
`(t, Xt, αt)σ

k
` (t, Xt, αt)dt,

d[∂xl U(·, X·), ∂xi U(·, X·)]t =
n

∑
k,j=1

m

∑
`=1

∂xl xj U(t, Xt)∂xixk U(t, Xt)σ
j
`(t, Xt, αt)σ

i
`(t, Xt, αt)dt,
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we obtain

dOt =
n

∑
i,k=1

µi(t, Xt, αt)
(

∂xi Ω + uxi ∂uΩ + uxixk ∂uxk Ω
)
(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt))dt

+
1
2

n

∑
i,j,k,l=1

m

∑
`=1

σi
`(t, Xt, αt)σ

j
`(t, Xt, αt)

(
∂xi ,xj Ω + uxj ∂xi ,uΩ + uxjxk ∂xiuxk

Ω + uxi ∂xj ,uΩ

+ uxi uxj ∂uuΩ + uxi uxjxk ∂uuxk Ω + uxixj ∂uΩ + uxixk ∂xjuxk
Ω + uxixk uxj ∂uxk uΩ

+ uxixk uxjxl ∂uxk uxl Ω + uxixjxk ∂uxk Ω
)
(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt), D3U(t, Xt))dt

+

(
∂tU ∂uΩ +

n

∑
i=1

∂txi U ∂uxi Ω + ∂tΩ

)
(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt))dt + dMt,

where Mt is a local martingale. Using the explicit definition of Dxi , it is simple to note that

Dxi Ω = ∂xi Ω + uxi ∂uΩ +
n

∑
k=1

uxixk ∂uxk Ω,

Dxixj Ω = ∂xixj Ω + uxj ∂xiuΩ + uxi ∂xjuΩ + uxi uxj ∂uuΩ + uxixj ∂uΩ

+
n

∑
k,l=1

(
uxjxk ∂xiuxk

Ω + uxi uxjxk ∂uuxk Ω + uxixk ∂xjuxk
Ω

+ uxixk uxj ∂uxk uΩ + uxixk uxjxl ∂uxk uxl Ω + uxixjxk ∂uxk Ω
)

,

and we have

∂tU = −H(t, x,∇U, D2U) and ∂t,xi U = −(Dxi H)(t, x,∇U, D2U, D3U).

Using Lemma 2, the fact that we can choose αt = A(t, Xt,∇U(t, Xt), D2U(t, Xt)), and
the determining Equation (34), we obtain

dOt =

=
n

∑
i=1

µi(t, Xt, αt)(Dxi Ω)(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt))dt

+
1
2

m

∑
`=1

n

∑
i,j=1

σi
`(t, Xt, αt) · σj

`(t, Xt, αt)

· (Dxixj Ω)(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt), D3U(t, Xt))dt

+
n

∑
i=1

(
−H∂uΩ−Dxi H∂uxi Ω + ∂tΩ

)
(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt))dt + dMt

=
n

∑
i,j=1

(
Dxi Ω∂uxi H +Dxixj Ω∂u

xi xj H − H∂uΩ−Dxi H∂uxi Ω + ∂tΩ
)

(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt), D3U(t, Xt))dt + dMt

= dMt,

which concludes the proof.
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4.2. The Case of Stochastic HJB Equation

We face the problem of stochastic HJB equation, that is, we consider, as we did in
Section 2.3,

HS(t, x, ux, uxx, a, ψx) =
n

∑
i=1

µi(t, x, a, ω)uxi

+
1
2

n

∑
i,j=1

m

∑
`=1

σi
`(t, x, a, ω)σ

j
`(t, x, a, ω)uxixj

+
n

∑
i=1

m

∑
`=1

σi
`(t, x, a, ω)ψ`

xi + LS(t, x, a).

(38)

and
HS(t, x, ux, uxx, ψx) = sup

a∈K
HS(t, x, ux, uxx, a, ψx).

In this case,

dUt(x) = −HS(t, x,∇U, D2U,∇Ψ)dt +
m

∑
`=1

Ψ`
t (x)dW`

t . (39)

Though some ideas concerning symmetries for SPDEs are discussed, e.g., in [63,64],
a general theory has not been developed yet. For this reason, we extend the notion of
infinitesimal symmetry introduced in Definition 7 in the following way. Hereafter, we
consider the probability space (W ,Ft,P) whereW = C0(R,Rm) is the canonical space for
the Brownian motion W, Ft is the natural filtration generated by Wt, and P is the Wiener
measure onW .

Definition 8. Let Ω : R+ × J1(Rn,R) ×W → R be a predictable regular random field on
R+ × J1(Rn,R), which is C1 with respect to the time t and C2 in all other variables. We say that
YΩ is a contact symmetry for Equation (39) when we have

∂tΩ− HS∂uΩ +
n

∑
i,j=1

(
Dxi Ω∂uxi HS +Dxixj Ω∂u

xi xj HS −Dxi HS∂uxi Ω
)
= 0.

Assumption 2. There exists at least one measurable function AS(t, x, ux, uxx, ψx) such that

AS(t, x, ux, uxx, ψx) ∈ arg maxHS(t, x, ux, uxx, ·, ψx),

whereHS is defined by Equation (38).

Lemma 3. We have that

∂uxi HS = µi(t, x,AS(t, x, ux, uxx, ψx), ω),

∂u
xi xj HS =

1
2

m

∑
`=1

σi
`(t, x,AS(x, ux, uxx, ψx), ω) σ

j
`(t, x,AS(t, x, ux, uxx, ψx), ω),

∂ψ`
xi

HS = σi
`(t, x,AS(t, x, ux, uxx, ψx), ω).

Proof. The proof is similar to the one of Lemma 2.

The following result represents our second stochastic generalization of the Noether
theorem.
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Theorem 13. Let Assumption 2 hold true. Suppose that the solution (U, Ψ) to Equation (39) is
continuously differentiable with respect to time and C3 with respect to x almost surely. If Ω is a
contact symmetry of Equation (9), then

Õt =Ω(t, Xt, U(t, Xt),∇U(t, Xt))

− 1
2

∫ t

0

n

∑
i,j=1

m

∑
`=1

(
∂uuΩ

(
(Ψ`

s)
2 + 2uxi σi

`Ψ
`
s

)
− ∂xiuΩσi

`Ψ
` − ∂uxi Ω∂xi σ

j
`Ψ

`
xj

+ ∂xiu
xj

Ωσi
`Ψ

`
xj + ∂uxi u

xj Ω(Ψ`
xi Ψ`

xj + σi
`uxi Ψ`

xj
+ σ

j
`uxj Ψ`

xi
)

+ ∂uu
xj Ω
(
Ψ`Ψ`

xj + σi
`uxi Ψ`

xj + σi
`uxixj Ψ`

))
(s, Xs, U(s, Xs),∇U(s, Xs))ds

(40)

is a local martingale.

Proof. Since the proof is similar to the one of Theorem 12, we report here only some steps
of the proof. By Theorem 3, we have

dU(t, Xt) =− HS(t, Xt,∇U(t, Xt), D2U(t, Xt),∇Ψt(Xt))dt

+
m

∑
`=1

Ψ`
t (Xt)dW`

t +
m

∑
`=1

n

∑
i=1

∂xi Ψ`(Xt)d[W`, Xi]t

+
n

∑
i=1

∂xi U(t, Xt)dXi
t +

1
2

n

∑
i,j=1

∂xixj U(t, Xt)d[Xi, X j]t,

(41)

and

d∂xk U(t, Xt) =−Dxk HS(t, Xt,∇U(t, Xt), D2U(Xt, t),∇Ψt(Xt))dt

+
m

∑
`=1

∂xk Ψ`
t (Xt)dW`

t +
n

∑
i=1

m

∑
`=1

∂xixk Ψ`
t (Xt)d[W`, Xi]t

+
n

∑
i=1

∂xixk U(t, Xt)dXi
t +

1
2

n

∑
i,j=1

∂xixjxk U(t, Xt)d[Xi, X j]t.

(42)

Adopting the usual notation for Ot = Ω(t, Xt, U(t, Xt),∇U(t, Xt)) and
αt = AS(t, Xt,∇U(t, Xt), D2U(t, Xt),∇Ψt(Xt)), we have

dOt =
n

∑
i=1

µi(t, Xt, αt)∂xi Ω(t, Xt, U(t, Xt),∇U(t, Xt))dt

+
1
2

n

∑
i,j=1

m

∑
`=1

σi
`(t, Xt, αt)σ

j
`(t, Xt, αt)∂xixj Ω(t, Xt, U(t, Xt),∇U(t, Xt))dt

+ ∂uΩ dU(t, Xt) +
1
2

∂uuΩ d[U, U] +
n

∑
i=1

∂xiuΩ d[Xi, U] +
n

∑
i=1

∂uxi Ω d∂xi U(t, Xt)

+
1
2

n

∑
i,j=1

∂uxi u
xj Ω d[∂xi U, ∂xj U] +

n

∑
j=1

∂uu
xj Ω d[U, ∂xj U] +

n

∑
i,i=1

∂xiu
xj

Ω d[Xi, ∂xj U]

+ ∂tΩ dt + dM̃t.
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Plugging in Equations (41) and (42), and exploiting Theorem 3 in order to compute
the quadratic variations, we get

dOt =

n

∑
i=1

µi(t, Xt, αt)

(
∂xi Ω + uxi ∂uΩ +

n

∑
k=1

uxi xk ∂uxk Ω

)
(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt))dt

+
1
2

n

∑
i,j=1

m

∑
`=1

σi
`(t, Xt, αt)σ

j
`(t, Xt, αt)

(
n

∑
k,l=1

∂xi xj Ω + uxj ∂xiuΩ + uxj xk ∂xiuxk
Ω + uxi ∂xjuΩ

+ uxi uxj ∂u,uΩ + uxi uxj xk ∂uuxk Ω + uxi xj ∂uΩ + uxi xk ∂xjuxk
Ω + uxi xk uxj ∂uxk uΩ

+ uxi xk uxj xl ∂uxk uxl Ω + uxi xj xk ∂uxk Ω

)
(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt), D3U(t, Xt))dt

− ∂uΩ(t, Xt, U(t, Xt),∇U(t, Xt))HS(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt),∇Ψt(Xt))dt

+
1
2

∂uuΩ(t, Xt, U(t, Xt),∇U(t, Xt))
n

∑
i=1

m

∑
`=1

(
Ψ`

t (x)2 + 2∂xi U(t, x)σi
`(x, a)Ψ`

t (x)
)
(t, Xt, αt)dt

+
n

∑
i=1

m

∑
`=1

∂xiuΩ(t, Xt, U(t, Xt),∇U(t, Xt))σ
i
`(Xt, αt)Ψ`

t (Xt)dt

−
n

∑
i=1

(
∂uxi ΩDxi HS

)
(t, Xt, U(t, Xt),∇U(t, Xt), D2U(t, Xt),∇Ψt(Xt))dt

+
n

∑
i,k=1

m

∑
`=1

(
∂uxi Ωσk

` ∂xi xk Ψ`
t + ∂uΩσi

`Ψ
`
xi

)
(t, Xt, U(t, Xt),∇U(t, Xt), αt)dt

+
n

∑
i,j=1

m

∑
`=1

(
∂uxi u

xj Ω(∂xi Ψ`
t ∂xj Ψ`

t + σi
`uxi ∂xj Ψ` + σ

j
`uxj ∂xi Ψ`)

)
(t, Xt, U(t, Xt),∇U(t, Xt), αt)dt

+
n

∑
i,j=1

m

∑
`=1

(
∂xiu

xj
Ωσi

`Ψ
`
xj

)
(t, Xt, U(t, Xt),∇U(t, Xt), αt)dt

+
n

∑
j=1

m

∑
`=1

(
∂uu

xj Ω(Ψ`
t ∂xj Ψ`

t + σi
`uxi ∂xj Ψ`

t + σi
`uxi xj Ψ`

t )
)
(t, Xt, U(t, Xt),∇U(t, Xt), αt)dt

+ dM̃t.

Notice that, by Definition 8, we have

0 = ∂uΩHS +
n

∑
i,j=1

(
∂uxi ΩDxi HS − ∂uxi HSDxi Ω− ∂uxi u

xj HSDxixj Ω
)

,

which, by Lemma 3, is equivalent to

∂uΩHS +
n

∑
i,j=1

(
∂uxi ΩDxi HS − ∂uxi HSDxi Ω− ∂uxi u

xj HSDxixj Ω
)
=

=
n

∑
i,j=1

m

∑
`=1

(
∂uxi Ω(∂xi σ

j
`Ψ

`
xj + σ

j
`Ψ

`
xjxi ) + ∂uΩ(σi

`Ψ
`
xi )
)

.
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Then we obtain

dOt =

1
2

∂u,uΩ(t, Xt, U(t, Xt),∇U(t, Xt))
n

∑
i=1

m

∑
`=1

(
(Ψ`

t )
2 + 2uxi σi

`Ψ
`
t

)
(t, Xt, U(t, Xt),∇U(t, Xt))dt

+
n

∑
i=1

m

∑
`=1

(
∂xiuΩσi

`Ψ
`
)
(t, Xt, U(t, Xt),∇U(t, Xt))dt +

n

∑
i,j= 1

m

∑
`=1

(
∂uxi u

xj Ω×

× (∂xi Ψ`
t ∂xj Ψ`

t + σi
`uxi ∂xj Ψ`

t + σ
j
`uxj ∂xi Ψ`

t )
)
(t, Xt, U(t, Xt),∇U(t, Xt), αt)dt

+
n

∑
i,j=1

m

∑
`=1

(
−∂uxi Ω∂xi σ

j
`∂xj Ψ`

t + ∂xiu
xj

Ωσi
`∂xj Ψ`

t

)
(t, Xt, U(t, Xt),∇U(t, Xt), αt)dt

+
n

∑
i,j=1

m

∑
`=1

(
∂uu

xj Ω(Ψ`∂xj Ψ`
t + σi

`uxi ∂xj Ψ`
t + σi

`uxixj Ψ`
t )
)
(t, Xt, U(t, Xt),∇U(t, Xt), αt)dt

+ dM̃t.

Following then the same steps as in the proof of Theorem 12 we get the result.

Corollary 1. Suppose that Ω is a Lie point symmetry of the form

Ω(t, x, u, ux) = cu + g(t, x)−
n

∑
k=1

f k(t, x)uxk ,

where c ∈ R and f k, g : Rn+1 → R are smooth functions such that, for j = 1, . . . , n and
` = 1, . . . , m,

n

∑
k=1

(
f k∂xk σ

j
` − σk

` ∂xk f j
)
= 0.

Then Ot = Ω(t, Xt,∇U(t, Xt)) is a local martingale.

Proof. Under the previous conditions, we have

n

∑
j=1

(
−∂u

xj Ω∂xj σi
`

)
+ ∂xiu

xj
Ωσi

` = ∂xiuΩσi
` = 0.

The thesis follows from Theorem 13.

5. Merton’s Optimal Portfolio Problem

In this section, we propose a symmetry analysis of Merton’s problem of optimal
portfolio selection (see the original paper [34,35] for a review on the subject). Let us
consider a set of controls αt = (c(t), γ(t)) and a controlled diffusion dynamics described
by the SDE

dXt =
(
(γ(t)(µ(t)− r) + r)Xt − c(t)

)
dt + Xtγ(t)σ(t)dWt, (43)

where X is the wealth process controlled by the proportion γ(t) ∈ [0, 1] invested in the risky
asset at time t and by the consumption c(t) ∈ [0,+∞) per unit time at time t. Moreover, r is
the constant interest rate, and µ(t), σ(t) > 0 are continuous functions such that σ(t) > ε > 0
(or in the case of Section 5.2 are general continuous predictable stochastic processes). Fixing
some finite time horizon T > 0, the problem of choosing optimal portfolio selection consists
of maximizing the objective functional

E
[∫ T

t
L(t, αt)ds + g(XT)

]
,
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where
L(t, αt) = e−ρtV(c(t)).

Here, ρ ∈ (0,+∞) is the discount rate, V is a strictly concave utility function that is
assumed to be differentiable with V′(z) > 0 for z > 0, and g is a given function.

Let us remark that the set K introduced in Section 2.2 here has the form

K = [0,+∞)× [0, 1].

5.1. Markovian Case

The maximization problem introduced above is a particular case of the general one
studied in Section 2.2. The associated value function is

U(t, x) = max
α∈KL

E
[∫ T

t
L(s, αs)ds + g(XT)

∣∣∣∣Xt = x
]

,

while the HJB equation becomes

∂tU + max
(c,γ)∈K

{
H(t, x,∇U, D2U, (c, γ))

}
= 0,

with

H(t, x, ux, uxx, (c, γ)) = exp(−ρt)V(c) + ux(γ(µ(t)− r) + r)x− uxc +
1
2

uxxσ(t)2γ2x2.

The optimal value (c?, γ?) of (c, γ) is given by the solutions to the system

∂cH = exp(−ρt)V′(c)− ux = 0,

∂γH = (µ(t)− r)xux + uxxσ2(t)x2γ = 0,

that is

c?(t) = (V′)−1(ux exp(ρt)), (44)

γ?(t) = − (µ(t)− r)ux

xuxxσ2(t)
. (45)

The corresponding functionalH takes the form

H(t, x, ux, uxx) =H(t, x, ux, uxx, (c?(t), γ?(t)))

= exp(−ρt)V(c?(t)) + ux(γ
?(t)(µ(t)− r) + r)x

− uxc?(t) +
1
2

uxxσ2(t)γ?(t)2x2

= exp(−ρt)V
(
(V′)−1(ux exp(ρt))

)
−
(
(µ(t)− r)ux

xuxxσ2(t)
(µ(t)− r) + r

)
xux

− ux(V′)−1(ux exp(ρt)) +
1
2

uxxσ2 (µ(t)− r)2u2
x

x2u2
xxσ4(t)

x2

= exp(−ρt)V
(
(V′)−1(ux exp(ρt))

)
−
(
(µ(t)− r)ux

xuxxσ2(t)
(µ(t)− r) + r

)
xux

− ux(V′)−1(ux exp(ρt)) +
1
2
(µ(t)− r)2u2

x
uxxσ2(t)

.

So we study the following PDE

ut −
δ(t)

2
u2

x
uxx

+ K(t, x, ux) = 0, (46)
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with

K(t, x, ux) = hV(t, ux) + rxux, (47)

δ(t) =
(µ(t)− r)2

σ2(t)
,

where

hV(t, ux) = exp(−ρt)V
(
(V′)−1(ux exp(ρt))

)
− ux(V′)−1(ux exp(ρt)).

We are looking for the symmetry generated by the generating function Ω(t, x, u, ux).
Hereafter, we assume that the function hV defined above is a smooth function in a suitable
open subset of R2.

Theorem 14. The function Ω generates a contact symmetry of Equation (46) if and only if it
admits one of the following forms

Ω1 = exp
(
− r(r− 1)t

2

)
[u · ur

x − xur+1
x ] + G1(t, ux),

Ω2 = −u + G2(t, ux),

Ω3 = exp(rt)xux + G3(t, ux),

Ω4 = G4(t, ux),

where G1, G2, G3, G4 : R+ ×R→ R are smooth functions satisfying the PDEs

2 exp
(
−r(r− 1)t

2

)
ur

xhV + δ(t)u2
x∂uxux G1 + 2∂tG1 = 0, (48)

2ux∂ux hV − 2hV + δ(t)u2
x∂uxux G2 + 2∂tG2 = 0, (49)

2 exp(rt)ux∂ux hV + 2xr exp(rt)ux + δ(t)u2
x∂uxux G3 + 2∂tG3 = 0, (50)

δ(t)u2
x∂uxux G4 + 2∂tG4 = 0. (51)

Finally, Theorems 12 and 14 allow us to obtain the explicit forms of the local martin-
gales of Merton’s model.

Corollary 2. Let U(t, x) be a classical solution to Equation (46) and let Xt be the solution to
Equation (43) with (γ, c) satisfying the equalities (44) and (45). Then, the processes

O1,t = exp
(
− r(r− 1)t

2

)
[U(t, Xt)∂xU(t, Xt)

r − ∂xU(t, Xt)
r+1] + G1(t, ∂xU(t, Xt)),

O2,t = U(t, Xt) + G2(t, ∂xU(t, Xt)),

O3,t = exp(rt)Xt∂xU(t, Xt) + G3(t, ∂xU(t, Xt)),

O4,t = G4(t, ∂xU(t, Xt)),

are local martingales.

Proof of Theorem 14. The generating function Ω is a (contact) symmetry of the PDE if and
only if the following set of determining equations holds

δ

2
u2

x∂uxux Ω + ux∂uΩ · ∂ux K + ∂xΩ · ∂ux K− ∂uΩ · K− ∂ux Ω · ∂xK + ∂tΩ = 0, (52)

δu2
x∂uux Ω + δux∂ux xΩ− δ∂xΩ = 0, (53)

δ

2
u2

x∂uuΩ + δux∂uxΩ +
δ

2
∂xxΩ = 0. (54)
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We can differentiate Equation (53) with respect to u and Equation (54) with respect to
ux, and equate the term ∂uuux Ω to obtain

(4∂uuΩ + ∂uux xΩ)u2
x + (∂ux xxΩ + 7∂uxΩ)ux + 2∂xxΩ = 0. (55)

Differentiating Equation (53) with respect to x, we can get an expression of ∂uux xΩ in
terms of ∂ux xxΩ and ∂xxΩ. Replacing now the obtained expression in Equation (55) yields

ux∂uuΩ + ∂uxΩ = 0. (56)

If we differentiate Equation (53) with respect to u and use Equation (56), then we have

∂uxΩ = 0. (57)

Inserting Equation (57) in Equation (56), we get

∂uuΩ = 0,

from which, thanks to Equations (54) and (57), we obtain

∂xxΩ = 0.

This means that Ω is a function of the form

Ω(t, x, u, ux) = f1(t, ux)u + f2(t, ux)x + f3(t, ux). (58)

If we replace expression (58) inside the determining Equations (52)–(54), we have that
f1, f2, and f3 have to satisfy the following set of equations

u2
x∂uxux f1 + 2∂t f1 = 0, (59)

u2
x∂uxux f2 + 2∂t f2 − 2 f2r = 0, (60)

−2ux f1 · ∂ux K− 2 f2 · ∂ux K + 2 f1 · K + δu2
x∂uxux f3 + 2∂t f3 = 0, (61)

u2
x∂ux f1 + ux∂ux f2 − f2 = 0. (62)

Solving Equation (62) with respect to f2, we obtain that

f2 = −ux f1 + g1(t)ux. (63)

Replacing the expression (63) in Equation (60) and using Equation (59), we have
the equation

−2u2
x∂ux f1 + 2ux∂tg1 + 2rux f1 − 2rg1ux = 0,

from which we get that

f1 =

[
d(t) +

b(t)
r

]
ur

x −
b(t)

r
, (64)

where b(t) = ∂tg1 − rg1. Replacing Equation (64) in Equation (59), we obtain

r(r− 1)
[

d(t) +
b(t)

r

]
+ 2
(

d′(t) +
b′(t)

r

)
= 0,

∂t,tg1 − r∂tg1 = 0,

giving

b(t) = c2, d(t) = d1 exp
(
−r(r− 1)t

2

)
− d2

r
, g1(t) = d3 exp(rt)− d2

r
,
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for some arbitrary constants d1, d2, and d3. Therefore, we have

f1 = d1 exp
(
−r(r− 1)t

2

)
ur

x −
d2

r
.

By (63), we obtain

f2 = −d1 exp
(
−r(r− 1)t

2

)
ur+1

x + d3 exp(rt)ux.

Inserting the previous expression of f1, f2, and f3 in (61), we get that Ω is a con-
tact symmetry of Equation (46) if and only if it is a linear combination of the following
expressions

Ω1 = exp
(
− r(r− 1)t

2

)
[u · ur

x − xur+1
x ] + G1(t, ux), d1 = 1, d2 = d3 = 0,

Ω2 = −u + G2(t, ux), d2 = −r, d1 = d3 = 0,

Ω3 = exp(rt)xux + G3(t, ux), d3 = 1, d1 = d2 = 0,

Ω4 = G4(t, ux), d1 = d2 = d3 = 0,

where G1, G2, G3, and G4 are smooth solutions to the PDEs satisfying Equations (48)–(51).

Equations (48)–(51) can be solved explicitly for some special form of K(t, x, ux). Taking,
in particular, the following two expressions

K1 = h1 + rxux, h1 = − exp(−ρt)[log(ux) + ρt + 1],

and

K2 = h2 + rxux, h2 = − exp
(

ρt
θ − 1

)
u

θ
θ−1
x

θ − 1
θ

,

derived by taking the isoelastic utility functions, also known as constant relative risk
aversion utilities (see [65]) defined as

V(z) = log(z) and V(z) =
zθ

θ
, θ ∈ (0, 1),

respectively. If we denote by Ω1
1 = exp

(
− r(r−1)t

2

)
[u · ur

x − xur+1
x ] + G1

1(t, ux) and by

Ω2
1 = exp

(
− r(r−1)t

2

)
[u · ur

x − xur+1
x ] + G2

1(t, ux) the symmetries of the Equation (46) when

K = K1 and K = K2, respectively, we have that G1
1 solves the equation

Γ1(t, ux) + δ(t)u2
x∂ux ,ux G1

1 + 2∂tG1
1 = 0, (65)

where

Γ1(t, ux) = 2 exp
(
− r(r− 1)t− ρt

2

)
[1− 2ur

x − log(ux)ur
x − ρtur

x]. (66)

Making the ansatz

G1
1(t, ux) = φ1(t)ur

x + φ2(t)ur
x log(ux) + φ3(t),
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we have that G1
1 solves (65) if and only if φ1, φ2, φ3 solve the following ODEs

φ′1 = 2 exp
(
− r(r− 1)t

2
− ρt

)
(2 + ρt)− δ(t)r(r− 1)φ1 − δ(t)(r− 2)φ2 − δ(t)φ2,

φ′2 = 2 exp
(
− r(r− 1)t

2
− ρt

)
− δ(t)r(r− 1)φ2,

φ′3 = 2 exp
(

r(r− 1)t
2

− ρt
)

.

In the same way G2
1 solves

Γ2(t, ux) + u2
x∂ux ,ux G2

1 + 2∂tG2
1 = 0, (67)

where

Γ2(t, ux) = 2u
θ

θ−1
x exp

(
− r(r− 1)t

2
+

ρ

θ − 1
t
)[

1− 2
θ − 1

θ
ur

x

]
.

With the ansatz
G2

1(t, ux) = φ1(t)u
θ

θ−1
x + φ2(t)u

θ
θ−1+r−1
x ,

Equation (67) holds if and only if φ1, φ2, and φ3 solve the following ODEs

φ′1 = exp
(
− r(r− 1)t

2
+

ρ

θ − 1
t
)
− δ(t)

2

(
θ

θ − 1

)(
θ

θ − 1
− 1
)

φ1,

φ′2 = 4
θ − 1

θ
exp

(
− r(r− 1)t

2
+

ρ

θ − 1
t
)
− δ(t)

(
θ

θ − 1
+ r
)(

θ

θ − 1
+ r− 1

)
φ2.

If we denote by Ω1
2 = −u + G1

2(t, ux) and by Ω2
2 = −u + G2

2(t, ux) the symmetries of
the Equation (46) when K = K1 and K = K2, respectively, then we get that Gi

2, i = 1, 2,
solve (49) with h1 and h2 given by (65) and (66).
With the ansatz

G1
2(t, ux) = φ1(t) + φ2(t) log(ux),

The function G1
2 solves (49) (with h = h1) if and only if φ1 and φ2 solve the follow-

ing ODEs

φ′1(t) =
δ(t)

2
φ2(t)− exp(−ρt)− exp(−ρt)(ρt + 1)

φ′2(t) =− exp(−ρt).

With the ansatz
G2

2(t, ux) = φ1(t)u
θ

θ−1
x ,

the function G2
2 solves (49) (with h = h2) if and only if φ1 solves the following ODE

φ′1(t) = −
δ(t)θ

2(θ − 1)2 φ1 −
1
θ

exp
(

ρ

θ − 1
t
)

.

If we denote by Ω1
3 = exp(rt)xux + G1

3(t, ux) and by Ω2
3 = exp(rt)xux + G2

3(t, ux) the
symmetries of the Equation (46) when K = K1 and K = K2, respectively, then Gi

3, i = 1, 2,
solve (50) with h1 and h2 given above, respectively.
With the ansatz

G1
3(t, ux) = φ1(t) + φ2(t) log(ux),
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the function G1
3 solves (49) (with h = h1) if and only if φ1 and φ2 solve the following ODEs

φ′1(t) =
δ(t)

2
φ2(t)− exp((r− ρ)t),

φ′2(t) =0.

With the ansatz
G2

3(t, ux) = φ1(t)u
θ

θ−1
x ,

The function G2
3 solves (50) (with h = h2) if and only if φ1 solves the following ODE

φ′1(t) = −
δ(t)θ

2(θ − 1)2 φ1 + exp
((

r +
ρ

θ − 1

)
t
)

.

5.2. Non-Markovian Case

We consider here the case where µ(t) and σ(t) are predictable continuous stochastic
processes with respect to the filtration generated by Ft, that is, the problem now fits in the
more general model treated in Section 2.3. This case is relevant, for example, when we are
considering stochastic volatility models (see, e.g., [36,38,66] for stochastic volatility models
and [39] for the non-Markovian Merton problem of the form approached here). We assume
also that g(x, ω) is a Ft random field. In this case, the value function is a random field
depending on the time t and the variable x of the form

U(t, x) = E
[∫ T

t
L(s, αt)ds + g(XT , ω)

∣∣∣∣Ft ∩ {Xt = x}
]

.

The random field U satisfies the following backward stochastic PDE

dU(t, x) + sup
(c,γ)∈K

HS(t, x,∇U(t, x), D2U(t, x),∇Ψ(t, x), (c, γ))dt = Ψ(t, x)dWt, (68)

where

HS(t, x, ux, uxx, ψx, (c, γ)) =

= exp(−ρt)V(c) + (γ(µ(t)− r) + r)xux − cux + xσ(t)γψx +
1
2

uxxσ(t)2γ2x2.

The optimal value of the function (c, γ) is given by the solution to the system

∂cH = exp(−ρt)V′(c)− ux = 0,

∂γH = (µ(t)− r)xux + xσ(t)ψx + uxxσ2(t)x2γ = 0,

which means that

γ∗ = − (µ(t)− r)ux + σ(t)ψx

xuxxσ(t)2 , (69)

while c∗ is given by Equation (44). This implies that

HS(t, x, ux, uxx, ψx) =
((µ(t)− r)ux + σ(t)ψx)2

2σ(t)2uxx
+ K(t, x, ux),

where K(t, x, ux) is given by Equation (47). In the following, we write

δS(t) =
(µ(t)− r)2

σ(t)2 ,

where we recall that here µ and σ are generic predictable continuous stochastic processes.
So we consider a generator function ΩS(t, u, ux, ω), depending explicitly on ω.
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Theorem 15. The generator function ΩS(t, u, ux, ω) is a symmetry of Equation (68) in the sense
of Definition 8 if and only if ΩS has one of the following forms

Ω1 = exp
(
− r(r− 1)t

2

)
[u · ur

x − xur+1
x ] + G1(t, ux),

Ω2 = −u + G2(t, ux),

Ω3 = exp(rt)xux + G3(t, ux),

Ω4 = G4(t, ux),

where GS
1 , GS

2 , GS
3 : R+×R×Ω→ R are smooth predictable random fields satisfying the following

random PDEs

2 exp
(
− r(r− 1)t

2

)
ur

xhV + δS(t)u2
x∂uxux G1 + 2∂tG1 = 0, (70)

2ux∂ux hV − 2hV + δS(t)u2
x∂uxux G2 + 2∂tG2 = 0, (71)

2 exp(rt)ux∂ux hV + δS(t)u2
x∂uxux G3 + 2∂tG3 = 0, (72)

δS(t)u2
x∂uxux G4 + 2∂tG4 = 0. (73)

Proof. Since

HS(t, x, ux, uxx, 0) =
δS(t)
2uxx

+ K(t, x, ux),

which is formally equal to H defined in Section 5.1, the theorem can be easily proven using
the same argument exploited in the proof of Theorem 14.

Remark 16. The symmetries ΩS
i of Theorem 15 depend on ω ∈ W since the functions Gi solve

the random Equations (70)–(73) (where the random dependence is given by δS(t)).

Corollary 3. Let (U(t, x), Ψ(t, x)) be a classical solution to Equation (68) and let Xt be the
solution to Equation (43) with (γ, c) satisfying equalities (44) and (69). Then, the processes

Õ1,t = exp
(
− r(r− 1)t

2

)
[U(t, Xt)∂xU(t, Xt)

r − ∂xU(t, Xt)
r+1]

+ G1(t, ∂xU(t, Xt))− I1(t, U,∇U,∇Ψ),

Õ2,t =U(t, Xt) + G2(t, ∂xU(t, Xt))− I2(t, U,∇U,∇Ψ),

Õ3,t = exp(rt)Xt∂xU(t, Xt) + G3(t, ∂xU(t, Xt))− I3(t, U,∇U,∇Ψ),

Õ4,t = G4(t, ∂xU(t, Xt))− I4(t, U,∇U,∇Ψ),

are local martingales. Here, I1, I2, I3, and I4 are the integral expressions associated with O1,t, O2,t,
O3,t, and O4,t, respectively, by the relation given in Equation (40).

Proof. The first statement follows from Theorems 13 and 15.

In the particular case where r = 0, V(z) = zθ/θ (where θ ∈ (0, 1)) or without the
consumption V(z) = 0, c = 0, we can obtain the following stronger result.

Corollary 4. Suppose that r = 0 and V(z) = zθ/θ. Then, we have that

Ot = −U(t, Xt)−
1
θ

Xt∂xU(t, Xt)

is a local martingale. Furthermore, if V = 0 (and we consider c = 0) we have that, for any
c1, c2 ∈ R,

Oc1,c2
t = c1U(t, Xt) + c2Xt∂xU(t, Xt)
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is a local martingale.

Proof. If V(z) = zθ/θ we have

hV(t, ux) = − exp(−ρt)u
θ

θ−1
x

θ − 1
θ

.

This implies that
(

1
θ − 1

)
∂ux hV − hV = 0. So, using Equations (71) and (72), we

get that

Ω5 = Ω2 −
1
θ

Ω3 = −u− 1
θ

xux + G5(t, ux),

where G5(t, ux) is any solution to the equation

δS(t)u2
x∂uxux G5 + 2∂tG5 = 0, (74)

is a symmetry of the Equation (68). A particular solution to Equation (74) is G5 ≡ 0,
in which case Ω5 has the form Ω5 = −u − xux/θ; however, −u − xux/θ satisfies the
hypotheses of Corollary 1, from which we get the thesis. The second part of the corollary
can be proven in a similar way.

As already mentioned in the introduction, the construction of the martingales obtained
in Corollaries 2 and 4 could be deeply connected to the well-known explicit solutions of
Merton’s optimal portfolio problem (see, e.g., [35] for a review and [36,37] for recent
developments on the explicit solutions of Merton’s problem). The investigation of the link
between these two notions will be the subject of a future paper.

6. Conclusions

We proposed a generalization of the Noether theorem to a generic stochastic optimal
control problem exploiting the tools of contact geometry and contact transformations.
The results are formulated in Theorems 12 and 13 and Corollary 1, and they establish a
relation between any contact symmetry of the HJB equation associated with an optimal
control problem and a martingale given by the generator of the contact symmetry. For
the case of deterministic coefficients and Lagrangian, we considered a generating function
Ω(t, x, u, ux) of a contact symmetry of the associated HJB equation and we showed that
the process Ω(t, Xt,U (t, Xt),∇U (t, Xt)), where U(t, x) is the solution to the HJB equation
and Xt is the solution to the stochastic optimal control problem, is a local martingale. Also,
we proved an analogous result for a stochastic optimal control problem with stochastic
coefficients and Lagrangian.

As we pointed out in the introduction, our results can be seen as a generalization
of some previous works by Zambrini et al. (see, [24,25,30]) in two directions: first we
considered a wider class of transformations, and second we extended the mentioned result
to the case of stochastic backward HJB equations.

We applied our results to Merton’s portfolio problem, building some martingales
related to its solution(s). We considered both the Markovian and the non-Markovian case.

Interesting future developments of this work can be the investigation of the case where
the solutions of HJB equations are viscosity solutions (and not classical), so that there is
not enough regularity to apply Itô’s formula, and the study of symmetries of stochastic
backward equations based on the HJB equations exploited in the present paper. Finally,
giving a financial meaning to the martingales we built in the case of Merton’s problem
could be another interesting line of research.
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