Microscopic Numerical Simulations of Epidemic Models on Networks
Abstract
:1. Introduction
2. Network
2.1. Outline of Network Theory
2.2. Network Generation
2.2.1. Erdös-Rényi Network
2.2.2. Barabási-Albert Network
3. SIR Model
3.1. Differential Equation of SIR Model
3.2. Exact Analytical Solution
3.3. Method of Microscopic Simulation of SIR Model
- Generate a network.
- At , an individual or individuals are infected (I).
- A susceptible individual (S) will be infected (I) with a probability p if a connecting individual (one of k) is infected (I). In terms of the SIR model, the parameter is .
- An infected individual (I) will be recovered (R) in days on average. The infected period is chosen by a Poisson distribution with the average of .
- At each time t, the processes 3, 4 are repeated.
- The time sequence obtained from the above procedure is regarded as a single sample. Simulations are performed for several samples.
3.4. Results of SIR Model on the Erdös-Rényi Network
3.5. Results of SIR Model on the Barabási-Albert Network
3.6. Mitigation Strategy
4. SEIR Model
4.1. Differential Equation of SEIR Model
4.2. Method of Microscopic Simulation of SEIR Model
- Generate a network.
- At , an individual or individuals are infected as the latent state (E).
- A susceptible individual (S) will be infected in the latent state (E) with a probability p if a connecting individual (one of k) is symptomatically infected (I). In terms of the SEIR model, the parameter is .
- An exposed individual in the latent state (E) will be symptomatically infected (I) in days on average. The latent period is chosen by a Poisson distribution with an average of .
- A symptomatically infected individual (I) will be recovered (R) in days on average. The infected period is chosen by a Poisson distribution with an average of .
- At each time t, processes 3–5 are repeated.
- The time sequence obtained from the above procedure is regarded as a single sample. Simulations are performed for several samples.
4.3. Results of SEIR Model on the Erdös-Rényi Network
5. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Python Code of the Exact Analytical Solution of the SIR Model
References
- World Health Organization WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 30 March 2021).
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.T.; Leung, K.; Bushman, M.; Kishore, N.; Niehus, R.; de Salazar, P.M.; Cowling, B.J.; Lipsitch, M.; Leung, G.M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020, 26, 506–510. [Google Scholar] [CrossRef] [Green Version]
- Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.; Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health 2020, 13, 667–673. [Google Scholar] [CrossRef]
- Burki, T.K. Coronavirus in China. Lancet Respir. Med. 2020, 8, 223. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics, I. Proc. Roy. Soc. Lond. A 1927, 115, 700–721. [Google Scholar]
- Bailey, N.T.J. The Mathematical Theory of Infectious Diseases and Its Applications, 2nd ed.; Griffin: London, UK, 1975. [Google Scholar]
- Atkeson, A. What Will Be the Economic Impact of COVID-19 in the US? Rough Estimates of Disease Scenarios; NBER Working Paper No. 26867; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Roda, W.C.; Varughese, M.B.; Han, D.; Liu, M.Y. Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Dis. Model. 2020, 5, 271–281. [Google Scholar] [CrossRef]
- Hethcote, H.W. The Mathematics of Infectious Diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Villaverde, J.; Jones, C.I. Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities; NBER Working Paper No. 27128; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Batista, M. Estimation of the final size of the COVID-19 epidemic. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-M.; Hethcote, H.W.; Levin, S.A. Dynamical behavior of epidemiological models with non-linear incidence rate. J. Math. Biol. 1987, 25, 359–380. [Google Scholar] [CrossRef] [PubMed]
- Hethcote, H.W.; van den Driessche, P. Some epidemiological models with nonlinear incidence. J. Math. Biol. 1991, 29, 271–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.Y.; Graef, J.R.; Wang, L.; Karsai, J. Global dynamics of a SEIR model with varying total population size. Math. Biosci. 1999, 160, 191–213. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Yang, W.; Zhang, D.; Zhuge, C.; Hong, L. Epidemic analysis of COVID-19 in China by dynamical modeling. arXiv 2020, arXiv:2002.06563. [Google Scholar]
- Barabási, A.-L. Scale-free networks: A decade and beyond. Science 2009, 325, 412–413. [Google Scholar] [CrossRef] [Green Version]
- Cattuto, C.; Van den Broeck, W.; Barrat, A.; Colizza, V.; Pinton, J.-F.; Vespignani, A. Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 2010, 5, e11596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, K.; Bianconi, G. Social interactions model and adaptability of human behaviour. Front. Physiol. 2011, 2, 101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-Q.; Li, X. Characterizing large-scale population’s indoor spatio-temporal interactive behaviors. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing; ACM: New York, NY, USA, 2012; pp. 25–32. [Google Scholar]
- Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Satorras, R.; Vespignani, A. Epidemic Spreading in Scale-Free Networks. Phys. Rev. Lett. 2001, 86, 3200–3203. [Google Scholar] [CrossRef] [Green Version]
- Dezsö, Z.; Barabási, A.-L. Halting viruses in scale-free networks. Phys. Rev. E 2002, 65, 055103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.E. Spread of epidemic disease on network. Phys. Rev. E 2002, 66, 016128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hufnagel, L.; Brockmann, D.; Geisel, T. Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 2004, 101, 15124–15129. [Google Scholar] [CrossRef] [Green Version]
- Keeling, M.J.; Eames, K.T.D. Networks and epidemic models. J. R. Soc. Interface 2005, 2, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Tome, T.; Ziff, R.M. Critical behavior of the susceptible-infected-recovered model on a square lattice. Phys. Rev. E 2010, 82, 051921. [Google Scholar] [CrossRef] [Green Version]
- Pellis, L.; Ball, F.; Bansal, S.; Eames, K.; House, T.; Isham, V.; Trapman, P. Eight challenges for network epidemic models. Epidemics 2015, 10, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, H.A.; Schwartz, J.-M. Why COVID-19 models should incorporate the network of social interactions. Phys. Biol. 2020, 17, 065008. [Google Scholar] [CrossRef]
- Choi, K.; Choi, H.; Kahng, B. Covid-19 epidemic under the K-quarantine model: Network approach. arXiv 2020, arXiv:2010.07157. [Google Scholar]
- Okabe, Y.; Shudo, A. A Mathematical Model of Epidemics—A Tutorial for Students. Mathematics 2020, 8, 1174. [Google Scholar] [CrossRef]
- Erdös, P.; Rényi, A. On Random Graphs I. Publ. Math. 1959, 6, 290–297. [Google Scholar]
- Erdös, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 1960, 5, 17–61. [Google Scholar]
- Barabási, A.-L. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Newman, M. Networks, 2nd ed.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Caldarelli, G.; Catanzaro, M. Networks: A Very Short Introduction; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Euler, L. Solutio Problematis ad Geometriam Situs Pertinentis. Comment. Acad. Sci. Imp. Petropolitanae 1741, 8, 128–140. [Google Scholar]
- Alexanderson, G. Euler and Konigsberg’s Bridges: A historical view. Bull. Am. Math. Soc. 2006, 43, 567–571. [Google Scholar] [CrossRef]
- Kirchhoff, G. On the motion of electricity in wires. Philos. Mag. 1845, 13, 393–412. [Google Scholar] [CrossRef]
- Cayley, A. On the symmetric functions of the roots of certain systems of two equations. Phil. Trans. R. Soc. Lond. 1857, 147, 717–726. [Google Scholar]
- Hamilton, W.R. Account of the Icosian Calculus. Proc. R. Ir. Acad. 1858, 6, 415–416. [Google Scholar]
- Moreno, J.L. Who Shall Survive? A New Approach to the Problem of Human Interrelations; Beacon House: New York, NY, USA, 1934. [Google Scholar]
- Milgram, S. The Small World Problem. Psychol. Today 1967, 1, 61–67. [Google Scholar]
- Travers, J.; Milgram, S. An Experimental Study of the Small World Problem. Sociometry 1969, 32, 425–443. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ’small-world’ networks. Nature (London) 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Broido, A.D.; Clauset, A. Scale-free networks are rare. Nat. Commun. 2019, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L.; Albert, R.; Jeong, H. Mean-field theory for scale-free random networks. Phys. A 1999, 272, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Dorogovtsev, S.N.; Mendes, J.F.F.; Samukhin, A.N. Structure of Growing Networks: Exact Solution of the Barabasi–Albert’s Model. Phys. Rev. Lett. 2000, 85, 4633–4636. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Mak, M.K. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Appl. Math. Comput. 2014, 236, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos, 3rd ed.; Academic: London, UK, 2010. [Google Scholar]
- Diekmann, O.; Heesterbeak, J.A.P.; Metz, J.A.J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 1990, 28, 365–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diekmann, O.; Heesterbeek, J.A.P. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation; John Wiley and Sons: Chichester, UK, 2000. [Google Scholar]
- Dietz, K. The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 1993, 2, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Metz, J.A.J.; Diekmann, O. (Eds.) The Dynamics of Physiologically Structured Populations. In Lecture Notes in Biomathematics 68; Springer: Heiderberg, Germany, 1986. [Google Scholar]
- Miller, J.C. A note on the derivation of epidemic final sizes. Bull. Math. Biol. 2012, 74, 2125–2141. [Google Scholar] [CrossRef] [PubMed]
- Marro, J.; Dickman, R. Nonequilibrium Phase Transitions in Lattice Models (Collection Alea-Saclay: Monographs and Texts in Statistical Physics); Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Mata, A.S. An overview of epidemic models with phase transitions to absorbing states running on top of complex networks. Chaos 2021, 31, 012101. [Google Scholar] [CrossRef]
- Harris, T.E. Contact Interactions on a Lattice. Ann. Probab. 1974, 2, 969–988. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction To Percolation Theory: Revised, 2nd ed.; Taylor and Francis: London, UK, 1994. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okabe, Y.; Shudo, A. Microscopic Numerical Simulations of Epidemic Models on Networks. Mathematics 2021, 9, 932. https://doi.org/10.3390/math9090932
Okabe Y, Shudo A. Microscopic Numerical Simulations of Epidemic Models on Networks. Mathematics. 2021; 9(9):932. https://doi.org/10.3390/math9090932
Chicago/Turabian StyleOkabe, Yutaka, and Akira Shudo. 2021. "Microscopic Numerical Simulations of Epidemic Models on Networks" Mathematics 9, no. 9: 932. https://doi.org/10.3390/math9090932
APA StyleOkabe, Y., & Shudo, A. (2021). Microscopic Numerical Simulations of Epidemic Models on Networks. Mathematics, 9(9), 932. https://doi.org/10.3390/math9090932