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Abstract: Mathematical models of the spread of epidemic diseases are studied, paying special
attention to networks. We treat the Susceptible-Infected-Recovered (SIR) model and the Susceptible-
Exposed-Infectious-Recovered (SEIR) model described by differential equations. We perform micro-
scopic numerical simulations for corresponding epidemic models on networks. Comparing a random
network and a scale-free network for the spread of the infection, we emphasize the role of hubs in a
scale-free network. We also present a simple derivation of the exact solution of the SIR model.
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1. Introduction

The Coronavirus Disease 2019 (COVID-19) [1], first identified in Wuhan, China on
December 2019 [2,3], has spread globally. The World Health Organization (WHO) declared
the outbreak as a public health emergency of international concern on 30 January 2020.
Furthermore, the WHO announced the COVID-19 outbreak as a ’pandemic’ on 11 March
2020 [4,5]. Various epidemiological models are used to predict and analyze the spread
of COVID-19. Most commonly, the epidemiological model is a compartmental model
in which each individual is considered to be in one of the possible types: for example,
susceptible (S), infected (I), or recovered (R). The proportions of individuals in each type are
regarded as continuous variables, and their rate equations (time derivatives) are set up as a
function of these proportions with appropriate rate constants. By solving these differential
equations, the fraction of each type as a function of time is obtained. The Susceptible-
Infected-Recovered (SIR) model, proposed in 1927 by Kermack and McKendrick [6], is a
basic model of such a framework.

The SIR model [6,7] has been used as a mathematical model of epidemics in the
case of COVID-19 [8,9]. Some extended models have also been developed, such as the
Susceptible-Infectious-Recovered-Deceased (SIRD) model [10–12]. This model differenti-
ates between recovered and deceased individuals. Another example is the Susceptible-
Exposed-Infectious-Recovered (SEIR) model [13–16], where an ’exposed’ category is added.
It considers the situation involving a significant incubation period, during which individu-
als have been infected but are not yet infectious.

It is obvious that a given infective individual does not have an equal probability of
infecting all others. Each individual only has contact with a small fraction of the total
population, and the number of contacts that people have can vary greatly from one person
to another. The connection between individuals can be described by a network. The nodes
(vertices) in the network are connected by edges, which represent the interaction between
those nodes. The number of edges of a node is referred to as the degree of that node. In
the context of a network, the existence of ’hub’ is important. A hub is a node that has
connections with many other nodes. Many biological interactions are not homogeneous
and not random [17–20]. The degree distribution of nodes in a biological network can
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often be described by a power-law [21]. Networks with this kind of property are known
as scale-free.

The importance of the network structure in the analysis of epidemics was pointed
out, and a number of studies have been done [22–28]. In connection with COVID-19,
stochastic simulations of epidemic models on a scale-free network were studied aiming
at showing effective mitigation strategies [29]. The spread of COVID-19 under local
quarantine measures (K-quarantine) in South Korea was modeled using the SEIR model on
complex networks [30].

In the present paper, we study the mathematical models of epidemics, paying special
attention to networks. We perform microscopic numerical simulations of the SIR and SEIR
models on random and scale-free networks. We compare the results of the microscopic
simulations with those of the macroscopic model described by differential equations using
the same parameters, rate constants. We elucidate the role of hubs in a scale-free network
and discuss the effective method of mitigation strategy. We also show a simple derivation
of the analytical solution of the SIR model, and the computer code in Python for the
analytical solution will be presented. The present authors previously published a tutorial
for students to describe a mathematical model of epidemics, mainly focusing on differential
equations [31]. This article is a continuation of the tutorial, so that the description is
planned to be understandable for students.

This paper is organized as follows. In Section 2, the outline of network theory is
described. The Erdös-Rényi network [32,33], a random network, and the Barabási-Albert
network [21], a scale-free network, are introduced. In Section 3, we explain the SIR model
of differential equations and present a simple derivation of the exact solution of the SIR
model. We perform the microscopic simulation of the SIR model on networks. In Section 4,
the SEIR model is introduced, and the microscopic simulations on networks is performed.
The final section is devoted to a summary and discussion. The Python code of the exact
solution of the SIR model is given in Appendix A.

2. Network
2.1. Outline of Network Theory

Network science is an academic field which studies complex networks, and it has
applications in many disciplines including statistical physics, computer science, electrical
engineering, biology, economics, finance, public health, etc. [34–36]. It covers a wide range
of topics from social networking services (SNS) to movie-actor networks.

Networks can be used to represent connections between individuals. The nodes in
the network are connected by edges, which represent the relation between those nodes.
Two nodes sharing the same edge are considered to directly interact with one another and
are referred to as neighboring nodes. The number of edges of a node is referred to as the
degree of that node. Nodes with many edges that greatly exceed the average are referred
to as ‘hubs’. In computer science and network science, network theory is a part of graph
theory: a network can be defined as a graph in which nodes and/or edges have attributes.
A network can be an exceedingly complex structure, as the connections among the nodes
can exhibit complicated patterns.

The people who study the compartmental model of differential equations are not
necessarily familiar with the network theory. To fill in the gaps, the history of network
theory will be surveyed. Most of the descriptions are following a book by Caldarelli and
Catanzaro [36].

Graph theory is considered to begin when, in 1735, Euler [37] solved a popular puzzle
about bridges [38]. Euler started a whole branch of mathematics, built on graph analysis.
His intuition can be considered as the first, foundational moment of network science. After
him, many mathematicians studied the formal properties of networks, while scientists
applied them to a wide range of problems [39–41]. Moreno [42] was one of the first
researchers to apply the idea of network to society. His work started one of the most
important lines of network science: the analysis of social networks.
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The next important moment in the foundation of network science came with Erdös and
Rényi [32,33]. They studied a mathematical model representing a graph where vertices are
connected to each other completely at random. This model, lately known as random graph,
is a simplified model, and its properties are very different from those of real networks.
However, the random graph model is very important. It can be used in the probabilistic
method to prove the existence of graphs satisfying various properties or to provide a
rigorous definition of what it means for a property to hold for almost all graphs. The
simplest procedure for building a random graph is the following. We take all the possible
pairs of vertices. For each pair, we draw a link or pass to the next pair with some probability
p, until all the pairs are finished.

Real-world networks are not homogeneous and not random. In 1967, Milgram and
Travers [43,44] undertook a set of experiments examining the average path length for social
networks of people. The research suggested that human society is a small-world-type
network characterized by short path-lengths. A chain of “a friend of a friend” statements
can be made to connect any two people in a maximum of six steps, which is called the notion
of “six degrees of separation”. The small-world property is something intrinsic to networks.
By contrast, regular grids or lattices do not display it. In 1998, Watts and Strogatz [45] tried
to produce graphs with small-world properties. They started by considering a very simple,
regular structure. As the initial structure, they construct a regular ring lattice, a graph with
N nodes each connected to k neighbors. They cut one of the links in the initial structure and
rewired it with another node, chosen at random. A small number of shortcuts is enough
to bring all the elements of the system much closer to each other. The key ingredient that
transforms a structure of connections into a small world is the presence of a little disorder.

The appearance of hubs, heterogeneity, scale-invariance, and fat-tailed distributions
are observed in a set of different networks. The major limitation of the Watts–Strogatz
network is that it produces an unrealistic degree distribution, that is, it cannot produce
scale-free properties. In contrast, Barabasi and Albert [21] put forward a mathematical
model of the growth of a network, having hubs and scale-free degree distribution. They
imagined a graph that starts with a small set of vertices, connected at random. New nodes
are added at a steady rate to this initial nucleus, each of them carrying a given number of
links. A simple rule establishes how new nodes are linked: incoming vertices prefer old
ones that already have many links. This mechanism is called “preferential attachment”.

In 2001, Pastor-Satorras and Vespignani [22] studied the problem by modeling and
simulating the spread of a disease in a social network. They treated a minimal model of
epidemic, Susceptible-Infected-Susceptible (SIS) model. They found that the epidemic
threshold depends crucially on the features of the underlying network: a random network
or a scale-free network.

Real-world networks are scale-free? It has been a problem. In 2019, Broido and
Clauset [46] claimed that a strongly scale-free structure is empirically rare, while for most
networks, log-normal distributions fit the data as well or better than power laws. Even if
the distribution does not follow a pure power law, the importance of hubs is obvious.

2.2. Network Generation

Here, we treat two types of networks; random networks and scale-free networks.
For random networks, each link is added between two randomly selected nodes. Thus,
the degrees of each node have a Poisson distribution. Because this model was first
proposed by Erdös-Rényi, it is often called the ER network [32,33]. The degrees of each
node are heterogeneous for scale-free networks, following the power law. This implies that
a few nodes have large degrees, but the remaining nodes have small ones. The nodes with
many neighbors are called hubs. Because this model was first proposed by Barabási-Albert,
it is often called the BA network [21]. The BA network is built with an iterative growth
based on preferential attachment.

We use igraph (Version 0.8.2) package of Python (Version 3.7.3) to generate networks.
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2.2.1. Erdös-Rényi Network

An example of the ER network, a random network, and its histogram of the distribution
of degrees are shown in Figure 1. The number of nodes is N = 80 and the average number of
degrees is 〈k〉 = 4. The command to generate the graph is igraph.Graph.Erdos_Renyi().
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Figure 1. ER network; N = 80, 〈k〉 = 4. (a) Graph. (b) Distribution of degrees.

2.2.2. Barabási-Albert Network

Figure 2 shows an example of the BA network, a scale-free network, and its histogram
of the distribution of degrees. The number of nodes is N = 80 and the average number of
degrees is 〈k〉 = 4, which is the same as the ER network. We see from Figure 2b that there
are nodes with a large number of many degrees. The command to generate the graph is
igraph.Graph.Barabasi(). Because the BA network is an evolving network, we use blue
colors for the nodes of the first three steps in Figure 2a.
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Figure 2. BA network; N = 80, 〈k〉 = 4. (a) Graph. (b) Distribution of degrees.

To check the scale-free property of the BA network, we show the log-log plot of
the degree distribution for a large BA network in Figure 3. The number of the nodes is
N = 10,000, and the average connecting number is 〈k〉 = 8. An average over 40 samples
was taken. This sample of BA networks will be used in the simulation of microscopic
epidemic models on the network later. For convenience, we plot k−3 by red dotted curve.
We observe a power law of the form, P(k) ∝ k−3, for the degree distribution resulting from
the BA network. This power dependence was derived by the mean-field theory [21,47] and
the master equation method [48].
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Figure 3. Degree distribution of the BA network in log scale; N = 10,000, 〈k〉 = 8. The average over
40 samples. The function k−3 is plotted by a red dotted curve for convenience.

3. SIR Model
3.1. Differential Equation of SIR Model

We first explain the SIR model. (See Ref. [31].) We consider a closed society of N
individuals and classify individuals into three types: susceptible (S), infected (I), and recov-
ered (R). Infected individuals can only transmit the virus to susceptible individuals. Once
infected individuals have recovered (or have passed away), they can no longer infect others
and cannot be reinfected. The spread of epidemic diseases is described by the changes
in the numbers of the three types of individuals. We denote the number of susceptible
(S) individuals by x(t), the number of infected (I) individuals by y(t), and the number of
recovered or removed (R) individuals by z(t), as a function of time t. We do not consider
the birth and death processes. We illustrate the scheme of the SIR model in Figure 4.

���������	� �
������ ������
��

Figure 4. The illustration of the scheme of the SIR model.

The SIR model is expressed as simultaneous differential equations of variables x(t),
y(t), and z(t), such as

dx(t)
dt

= − β

N
x(t)y(t), (1)

dy(t)
dt

=
β

N
x(t)y(t)− γy(t) =

( β

N
x(t)− γ

)
y(t), (2)

dz(t)
dt

= γy(t), (3)

where β is the rate of infection and γ the rate of recovery (the rate of quarantine). We
consider that each person is in contact with k persons per unit time (day), and the probability
of infection for each contact is set as p. Then, β is given as kp. We assume that the total
number of individuals is set to be constant such that

x(t) + y(t) + z(t) = N. (4)

The SIR differential Equations (1)–(3) can be solved numerically by using a standard
Runge–Kutta method or a Gillespie algorithm of event-driven type. The exact analytical
solution of the differential equations was presented by Harko et al. in 2014 [49]. They
demonstrated that these simultaneous equations can be expressed as a differential equation
of a single variable x(t). Then, the problem is reduced to a Bernoulli differential equation,
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which can be solved exactly. However, there was a detour in the derivation of the exact
solution in Ref. [49]; they also used z(t) in the process of derivation. Only two variables
x(t) and y(t) are independent because of Equation (4), and x(t) and y(t) form closed
Equations (1) and (2). Okabe and Shudo presented a more straightforward derivation
using only x(t) and y(t) in a tutorial paper for epidemics [31].

The SIR model is treated as a typical system of nonlinear differential equations and
has been studied from various mathematical points of view. The nullclines analysis was
described in a textbook by Hirsch, Smale, and Devaney [50]. There, the flow in the xy(SI)-
plane is discussed.

In the present paper, we present a simple derivation of the exact analytical solution of
the SIR model referring to the textbook by Hirsch, Smale, and Devaney [50]. We also give a
Python code for the exact analytical solution of the SIR model, for convenience.

3.2. Exact Analytical Solution

We here show a simple derivation of the analytic solution of the SIR model. From
Equations (1) and (2), we obtain

dy
dx

=
−(β/N)x + γ

(β/N)x
= −1 +

γ

β

(N
x

)
. (5)

The integration with respect to x yields

y = −x +
γ

β
N ln x + C, (6)

where C is an integral constant. In the textbook by Hirsch, Smale, and Devaney [50], this
integral form was used in the discussion of flow in the xy(SI)-plane.

As initial conditions, we consider

x(0) = N1, (7)

y(0) = N − N1, (8)

z(0) = 0. (9)

Using these initial conditions, we have

C = N − γ

β
N ln N1. (10)

Then, y(t) is expressed as

y(t) = −x(t) +
γ

β
N ln(x(t)/N1) + N. (11)

Substituting Equation (11) into Equation (1), we obtain

dt =
dx

(β/N)x[x− (γ/β)N ln(x/N1)− N]
. (12)

By integrating this equation, t is obtained as a function of x(t) as follows:

t =
∫ x(t)/N1

1

du
βu[(N1/N)u− (γ/β) ln u− 1]

, (13)

where we changed a variable such that u = x/N1. This form is essentially the same as
Equation (26) of Ref. [49] and Equation (52) of Ref. [31]. However, we do not use the
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Bernoulli equation. We have obtained the exact analytical form simply and directly. When
x(t) is obtained, y(t) is calculated using Equation (11). Moreover, z(t) is calculated through

z(t) = N − x(t)− y(t). (14)

We note that for rate constants only the ratio of β and γ appears. The number R0
defined by

R0 =
β

γ
(15)

is known as the basic reproduction number [51–53], and the number of infected individuals
increases when R0 > 1, whereas it decreases when R0 < 1. It is also noteworthy that by
introducing scaled variables x̃ = x/N, ỹ = y/N, z̃ = z/N, and t̃ = βt, we can rewrite the
Equations (1)–(3) in scaled forms.

The Python program is given in the Appendix A. Numerical integration of Equation (13)
is performed by summing up an integrand of the right-hand side with a sufficiently small
step size. Then, t is calculated as a function of x(t). For numerical values, we set N = 10,000
and N1 = 9900. The calculated results using parameters β = 0.4 (solid), 0.45 (dashed), 0.5
(dotted) are shown in Figure 5; γ is fixed as 0.2.
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Figure 5. The exact analytical solution of the SIR model; N = 10,000, x(0) = N1 = 9990, y(0) = 10,
and z(0) = 0. Plot of the temporal variation of the susceptible (S), the infected (I) and the recovered
(R) for β = 0.4 (solid), 0.45 (dashed), 0.5 (dotted) and 1/γ = 5.0.

Because we have the Python code for the exact solution, we can demonstrate various
quantities easily. The directions of flow in the xy-plane are shown in Figure 6. The
parameters are the same as in Figure 5. Every 5 in time (t), the directions of flow are
depicted by arrows. The length of the arrow is measured for the period of 1.2 in t.

� ����� 
���� ����� 
���� ������
x����

�

�����

�����

	����


����

y�
��
�

1/γ= ���

�������������� ��������xy�������

β= ��

β= ��
�
β= ���

Figure 6. Directions of flow in the xy-plane for the SIR model. The parameters are the same as in
Figure 5. Every 5 in t, the directions of flow are depicted by arrows. The length of the arrow is
measured for the period of 1.2 in t.
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We here make a comment on the final size equation. Putting y(∞) = 0 in Equation (11),
we have the relation for the final value of x(∞):

x(∞) =
γ

β
N ln(x(∞)/N1) + N. (16)

In the limit of N1 → N, we obtain

x(∞)/N − 1 =
γ

β
ln(x(∞)/N). (17)

Then, we have

1− z(∞)/N = exp
[
− β

γ
(z(∞)/N)

]
. (18)

This relation is known as the final size equation [54]. This derivation of the final size
equation through Equation (6) was discussed by Miller [55]. For R0 = β/γ = 2.0, 2.25 and
2.5, we have z(∞)/N → 0.797, 0.853, and 0.893, respectively.

3.3. Method of Microscopic Simulation of SIR Model

We perform a microscopic simulation of the SIR model on a network. We follow a
procedure, of which parameters correspond to those for the differential equation of the
macroscopic variables. The actual procedure, which is similar to that by Herrmann [29], is
as follows:

1. Generate a network.
2. At t = 0, an individual or individuals are infected (I).
3. A susceptible individual (S) will be infected (I) with a probability p if a connecting

individual (one of k) is infected (I). In terms of the SIR model, the parameter β is
β = kp.

4. An infected individual (I) will be recovered (R) in 1/γ days on average. The infected
period is chosen by a Poisson distribution with the average of 1/γ.

5. At each time t, the processes 3, 4 are repeated.
6. The time sequence obtained from the above procedure is regarded as a single sample.

Simulations are performed for several samples.

3.4. Results of SIR Model on the Erdös-Rényi Network

We show the simulational results of the microscopic SIR model on the ER network.
First, we treat the case that only a single individual is infected at t = 0. The average number
of the connecting nodes per a node is 〈k〉 = 8, and the probability p of infection is 1/20,
which leads to β = 〈k〉p = 0.4. The average infected period, 1/γ, is chosen as 5 days, which
is realized by a Poisson distribution with the average value of 5. The total number of nodes
(individuals) is 10,000. The temporal variations of the number of individuals for three types
(S, I, R) are plotted in Figure 7. We simulated 40 samples. All the results of x(t), y(t), z(t)
for 40 samples are plotted in Figure 7a. There are several sources of randomness in the
temporal variation of each sample; the generation of a network, the choice of the node
of an initial infected individual, the probability p of transmission, and the choice of the
infected period 1/γ with a Poisson distribution. The temporal evolution is classified to
two types: (i) The number of infected individuals (I) increases with time, reaches a peak,
and gradually decreases, which is the same behavior as that for the SIR model of the
differential equation, as shown in Figure 5. (ii) The infection vanishes quickly and does
not spread throughout the network; the number of susceptible individuals (green curve)
remains almost the same. The behavior of the second type was observed in the simulation
by Herrmann and Schwartz [29] and is regarded as the absorbing state [56,57] in the
contact process [58]. The transition to the absorbing state is related to the percolation
phenomena [59]. For the parameters of Figure 7, about 14% of samples followed the
time variation of the second type. Starting from a single infected individual, a disease is
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transmitted to another individual with a probability of β = 0.4. However, some infected
individuals disappear shortly in the infected period with the Poisson distribution. Then,
the infection stops with some probability.
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Figure 7. The simulational results of the microscopic SIR model on the ER network. Only a single
individual is infected at t = 0. Initial values are x(0) = 9999, y(0) = 1, and z(0) = 0. (a) All the
results of 40 samples are plotted; (b) the average over 40 samples.

The averaged values of the time evolution of 40 samples are plotted in Figure 7b.
Because there are two types of time evolution, the average proportion of the final infected
individuals, z(∞)/N, becomes smaller than that of the macroscopic SIR model, 0.797 for
R0 = 2.0.

In order to compare with the macroscopic SIR model, we perform other simulations.
That is, 10 individuals are set to be infected initially at t = 0. Then, we did not observe
the type 2 behavior, absorbing state. Even if some initially infected individuals are caught
in an absorbing state, others transmit infection and the disease will spread. We simulate
the same situation as the macroscopic SIR model, where there is no absorbing state for
continuous variables. In Figure 8, we plot the time variation of the macroscopic SIR model
with initial 10 infected individuals. Initially infected individuals are chosen randomly. In
Figure 8a, we plot all the results of 40 samples, whereas the average over them is plotted in
Figure 8b. The microscopic model on the random network can be considered to reproduce
the behavior of the macroscopic SIR model. The solid curves in Figure 5 are the exact
solution of the SIR model of differential equations with the same rate constants as Figure 8;
β = 0.4 and 1/γ = 5.0. The time of the peak for the infected individuals, the peak value,
and the final number of recovered individuals (z(∞)) or the individuals who experienced
infection, take almost the same values as those of the macroscopic SIR model, but the
quantitative coincidence is not complete.

Because we mainly focus on the comparison of the microscopic simulation with the
epidemic model of differential equations, in the rest of the paper we do not deal with the
cases of the absorbing states.
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Figure 8. The simulational results of the microscopic SIR model on the ER network. Initially, 10
individuals were set to be infected. Initial values are x(0) = 9990, y(0) = 10, and z(0) = 0. (a) All the
results of 40 samples are plotted; (b) the average over 40 samples.

3.5. Results of SIR Model on the Barabási-Albert Network

We plot the simulational results of the microscopic SIR model on the BA network,
a scale-free network, in Figure 9. We set the number of the nodes N and the average
number of the connecting nodes 〈k〉 as 10,000 and 8, respectively, which are the same as the
case of the ER network. Because there is a hub structure in scale-free networks, the spread
of infection may depend on the origin of the initially infected individuals. We consider
two cases. One is the case that initially 10 infected individuals are within the hub, and the
other is the case that initially 10 infected individuals are outside the hub. We define the
hub by the node which has connecting nodes of k ≥ 14. Figure 9a,b are the results within
the hub and outside the hub, respectively. An average over 40 samples was taken for both
cases. First, we compare the behavior of the BA network with that of the ER network. We
observe the increase of the infected individuals, reaching a peak, and the gradual decrease.
The burst of the infection is rapid compared with the case of the ER network. The peak
is higher. The decrease of the infection is also fast. If we compare the final number of the
recovered, z(∞), this number of the BA network is smaller than that of the ER network. The
average number of the connecting nodes, 〈k〉, is the same for the BA network and the ER
network. The existence of the hub for the BA network, a scale-free network, stimulates the
rapid increase of the infection. At the same time, the existence of a large amount of nodes
of very small connecting nodes leads to the smaller final size of z(∞). For the difference of
initially infected individuals, if the initially infected individuals are within the hub, the
increase of the infection is more rapid and the peak of the infected individuals is higher
than the case of the initial individuals outside the hub. However, the difference is not
so large.

To elucidate the role of the hub in the BA network, we investigate the contribution
of the individuals within the hub for the time variation of the infection. We plot the time
sequence up to t = 40 in Figure 10, and the rate constants are the same as in Figure 9. The
solid curves in Figure 10 represent the time variation of the total individuals, whereas the
dashed curves represent that of the individuals within the hub (10%). Initial 10 infected
individuals are chosen randomly. The results of the average over 40 samples are shown.
The hub is defined by the node which has connecting nodes of k ≥ 14. For the convenience
of comparison, the ten times of the values of the hub are shown in dotted curves. We
observe that the number of infected individuals within the hub shows significantly rapid
growth. They reach the maximum very fast, and the peak value is high. The decrease
speed is also fast, and almost all the individuals within the hub will be infected. That is,
there are almost no noninfected individuals (x(∞) = 0). On the other hand, the nodes
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outside the hub grow rather slowly, and the decrease is also slow. Some amount of nodes
remain noninfected.
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Figure 9. The simulational results of the microscopic SIR model on the BA network. Initial infected
individuals are different. (a) The first 10 infected individuals are within the hub. (b) The first 10
infected individuals are outside the hub. For both cases, the average over 40 samples was taken.
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Figure 10. The contribution of the hub in the time variation of the microscopic SIR model on the
BA network. The rate constants are the same as in Figure 9. Time variation of the total nodes are
represented by a solid curve and that of the nodes within the hub (10%) by dashed curve. For the
convenience of comparison, the ten times values of the hub are shown by a dotted curve.

We examine the role of the hub from a different point of view. We plot the distribution
of degrees of the final noninfected individuals x(∞) for the BA network in Figure 11. The
parameters of the rate constants are the same as before. The initial 10 individuals were
chosen randomly, and the average over the 40 samples was taken. The gray bar represents
the distribution of total nodes. For the BA network, the distribution of small k is large,
and it has a tail with power dependence for large k; the nodes of the hub are shown by an
arrow. The log-log plot of the degree distribution was shown in Figure 3. The distribution
for the final noninfected individuals was represented by green bars. The absolute value of
the final noninfected individuals is larger for the BA network compared to the ER network.
(See Figures 8 and 9) We observe in Figure 11 that the proportion of nodes of small k is
especially large for the final noninfected individuals. That is, before the infection reaches
the nodes of small connections, the overall spread of the infection ceases.
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Figure 11. The distribution of degrees of the final noninfected individuals x(∞) for the BA network
in green color. The distribution of the total nodes is given in gray.

3.6. Mitigation Strategy

Next, we investigate the mitigation strategy of infection for the BA network. We
focus on the role of the hub. Various mitigation strategies have been taken to slow down
the rapid spread of COVID-19, such as complete or partial lockdown, travel bans, mass
gathering restrictions, home quarantines within communities, social distancing measures,
etc. Here, as a model of mitigation, we consider the isolation of individuals by restricting
the contact.

Let us consider the trial that we quarantine (isolate) 10% of individuals for the time
t ≥ 10. We do not perform the process 3 of the method of simulation for quarantined
individuals. We compare the results of two cases in Figure 12. In Figure 12a, we quarantine
randomly chosen 10% individuals for t ≥ 10, whereas in Figure 12b, 10% individuals within
the hub are quarantined for t ≥ 10. Initial 10 infected individuals are chosen randomly,
and an average over 40 samples was taken for both cases. If we compare the case of the
nonquarantine, shown in Figure 9, the quarantine curbs the spread of the infection, and the
final number of recovered individuals (z(∞)), or the individuals who experienced infection,
becomes smaller. The effects of quarantine are predominant for the 10% individuals within
the hub. The number of the final recovered individuals becomes drastically reduced.
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Figure 12. The effects of quarantine for the microscopic SIR model on the BA network. (a) At t ≥ 10,
10% nodes randomly chosen are isolated. (b) At t ≥ 10, 10% nodes within the hub are isolated. For
both cases, an average over 40 samples was taken.
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4. SEIR Model
4.1. Differential Equation of SEIR Model

For many important infections, there is a significant latent (incubation) period dur-
ing which individuals have been infected but are not yet infectious themselves. In the
Susceptible-Exposed-Infectious-Recovered (SEIR) model [13,16], an Exposed (E) category
for these individuals is added to the SIR model.

We denote the number of susceptible (S) individuals by x(t), the number of infectious
(I) confirmed individuals by y(t), the number of recovered (R) individuals by z(t), and the
number of exposed (E) individuals by w(t), as a function of time t. The spread of infection
is then described by the following system of nonlinear ordinary differential equations:

dx(t)
dt

= − β

N
x(t)y(t) (19)

dw(t)
dt

=
β

N
x(t)y(t)− σw(t) (20)

dy(t)
dt

= σw(t)− γy(t) (21)

dz(t)
dt

= γy(t). (22)

Here, contact rate β controls the rate of spread, which represents the probability of trans-
mitting disease between a susceptible and an infectious individual. Incubation rate σ is the
rate of latent individuals becoming infectious (i.e., the average incubation period is σ−1).
Recovery rate γ is the rate of infected individuals becoming recovered (i.e., the average
recovery period is γ−1). We do not consider birth and death processes. The total number
of individuals is constant such that

x(t) + w(t) + y(t) + z(t) = N. (23)

We illustrate the scheme of the SEIR model in Figure 13.

�����
�	�
� ��
���� �������� ���������

Figure 13. The illustration of the scheme of the SEIR model.

For the differential equations of the SEIR model, we cannot obtain the solution by
employing the transformation applied to the SIR model [49]. Thus, we show the numerical
solution using the second-order Runge–Kutta method in Figure 14. The parameters were
chosen as β = 0.5, 1/σ = 3.0 and 1/γ = 5.0. The number of individuals (nodes) is
N = 10,000, and the initial conditions are x(0) = N1 = 9990, w(0) = N − N1 = 10,
and y(0) = z(0) = 0.
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Figure 14. The numerical solution of the SEIR model using the second-order Runge–Kutta method.

The ratio of the final infected individuals, ζ = z(∞)/N, is obtained as the final size
equation. In the limit of N1/N → 1, the final size equation becomes R0 = −(ln(1− ζ))/ζ,
which is the same form as the SIR model. For R0 = β/γ = 2.5, it can be shown that
z(∞)/N → 0.893, which is reproduced in the numerical solution shown in Figure 14.

We briefly make a remark on the final size equation for the SEIR model. Considering
the sum of Equations (20) and (21), we obtain a relation, similar to Equation (5) for the
SIR model,

d(y + w)

dx
=
−(β/N)x + γ

(β/N)x
= −1 +

γ

β

(N
x

)
. (24)

Then, the integration with respect to x yields

y + w = −x +
γ

β
N ln x + C, (25)

where C is an integral constant. Thus, by replacing y in the SIR model by y + w, we have
the final size equation for the SEIR model in the limit N1/N → 1 as

β

γ
=

ln(x(∞)/N)

x(∞)/N − 1
. (26)

Or,

1− z(∞)/N = exp
[
− β

γ
(z(∞)/N)

]
, (27)

which is the same form as the case of the SIR model. It is noteworthy that only β/γ
appears and σ not. The analytical solution of the SIR model is obtained by inserting
y(t), Equation (6), to the dx(t)/dt in the differential equation, which results in the closed
equation of only x(t). However, in the case of the SEIR model, the left-hand side of
Equation (25) is y(t) + w(t), and we cannot insert y(t) in dx(t)/dt. Thus, we cannot obtain
the exact solution of the SEIR model.

4.2. Method of Microscopic Simulation of SEIR Model

We can extend a microscopic simulation on a network to the case of the SEIR model.
The actual procedure is as follows:

1. Generate a network.
2. At t = 0, an individual or individuals are infected as the latent state (E).
3. A susceptible individual (S) will be infected in the latent state (E) with a probability p

if a connecting individual (one of k) is symptomatically infected (I). In terms of the
SEIR model, the parameter β is β = kp.

4. An exposed individual in the latent state (E) will be symptomatically infected (I) in
1/σ days on average. The latent period is chosen by a Poisson distribution with an
average of 1/σ.
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5. A symptomatically infected individual (I) will be recovered (R) in 1/γ days on average.
The infected period is chosen by a Poisson distribution with an average of 1/γ.

6. At each time t, processes 3–5 are repeated.
7. The time sequence obtained from the above procedure is regarded as a single sample.

Simulations are performed for several samples.

4.3. Results of SEIR Model on the Erdös-Rényi Network

As an example of network, we performed a simulation of the microscopic SEIR model
on the ER network. In Figure 15, the temporal variations of the number of individuals
for four types (S, E, I, R) are plotted. The average number of the connecting nodes per a
node is 〈k〉 = 8, and the probability p in the process 3 is 1/16. The parameters β, γ, σ are
chosen to be equivalent to the case of the numerical solution of the macroscopic SEIR model
shown in Figure 14. The total number of nodes (individuals) is 10,000. Initial 10 infected
individuals in the latent state are chosen randomly. All the results of 40 samples are plotted
in Figure 15a, whereas the averaged values of 40 samples are given in Figure 15b.
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Figure 15. The simulational results of the microscopic SEIR model on the ER network. (a) All the
results of 40 samples are plotted; (b) the average over 40 samples.

The obtained results coincide with the results of the differential equations shown in
Figure 14. We can perform the microscopic simulation of the SEIR model on other networks.

5. Summary and Discussion

We described the mathematical models of the spread of epidemic diseases, paying
special attention to networks. We gave a survey of network theory with an emphasis
on the relation to epidemics. Two types of networks were introduced. One is the Erdös
Rényi network, a random network, and the other is the Barabási Albert network, a scale-
free network.

A simple derivation of the exact analytical solution of the SIR model [49] was presented.
The Python program of the exact solution was given in Appendix A. We do not have to use
numerical methods, such as a Runge–Kutta method or a Gillespie algorithm, to obtain the
solution of the differential equations.

We systematically studied the microscopic numerical simulations of the epidemic
models on networks and the corresponding macroscopic epidemic models described by
differential equations. We compared the results of the microscopic and macroscopic models
with the same (equivalent) parameters (rate constants). In the case of the ER network,
a random network, we obtained the results of the microscopic simulation of the SIR model
which reproduce the solution of the SIR model of differential equations. For the BA network,
a scale-free network, we observed a rapid burst of infection and a high peak of the number
of infected individuals. However, the decrease of the infection was also fast, and the final
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number of infected individuals is smaller than the case of the random network. All the
findings in the scale-free network were interpreted by the effects of hubs. We elucidated the
role of hubs in the scale-free network from various points of view. We also investigated the
mitigation strategy for the BA network and emphasized that the isolation of individuals in
the hub is important to curb the spread of infection. We also studied the macroscopic and
microscopic models of the SEIR model.

The present observations are natural consequences from the hub structure of a network.
We explicitly showed these results by a systematic comparison of different models. We may
learn lessons for a real-world strategy to fight against the pandemic. Because the infection
originates from contact, the social network structure, especially the existence of a hub, is
important. A quick response to an initial outbreak is more crucial for the hub structure.
To develop control strategies, such as the shutdown of individual connections, and the
complete or partial isolation of cities, the hub structure should be taken into account. When
discussing the cases per 100,000 population, the possibility of secondary infection should
be considered. In many countries, the role of the contact tracing is emphasized. However,
there is sometimes a gap between the tracing and the analysis based on the compartmental
model. The network theory bridges these two. In this context, the work by Choi et al. [30]
to analyze the K-quarantine strategy based on the complex network theory is interesting.
The network theory may suggest that networks with a weak hub structure are better to
design a social system that is robust against pandemics.
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Appendix A. Python Code of the Exact Analytical Solution of the SIR Model

import numpy as np
import matplotlib.pyplot as~plt

taxis,xaxis,yaxis,zaxis = [],[],[],[]

N = 10000
y = 10
x = N-y
z = 0
N1 = x

beta = 0.4
gamma = 0.2

du = -0.0001
u = 1.0
t_sum = 0
t = 0

while y > 0:
# print(f’{t:.2f}’,f’{x:.1f}’,f’{y:.1f}’,f’{z:.1f}’)
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taxis.append(t)
xaxis.append(x)
yaxis.append(y)
zaxis.append(z)

u += du
x = N1 * u
y = - x + gamma/beta*N*np.log(u) + N
z = N - x - y
dt = -N/(u*beta*y)
t_sum += dt
t = t_sum*du

plt.title(‘‘SIR MODEL (exact)’’)
plt.xlim(0,70)
plt.xlabel(’$t$’)
plt.text(62,2600,’$\gamma=$’+str(gamma), fontsize=10)
plt.text(62,3200,’$\\beta=$’+str(beta), fontsize=10)
plt.grid(True)

plt.plot(taxis,xaxis, color=(0,1,0), linewidth=1.0, label=’S’)
plt.plot(taxis,yaxis, color=(1,0,0), linewidth=1.0, label=’I’)
plt.plot(taxis,zaxis, color=(0,0,1), linewidth=1.0, label=’R’)

plt.legend(loc=’right’)
#plt.savefig(’SIR_exact.eps’)
plt.show()
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