# Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

- The numerical analysis of a Searaser in the form of the computational fluid dynamics is proposed by Flow-3D software, which completely demonstrates the ocean wave parameters and perfectly combines with the latest algorithm of long short-term memory.
- The artificial intelligence model is reasonably utilized to predict output electrical power based on a wind flow speed, and a mathematical relation between wave height and output power can be obtained to help the WEC industry and investors to predict output power, thus saving time and cost.

## 2. Materials and Methods

#### 2.1. Dataset

#### 2.2. Geometry and Description

#### 2.3. Governing Equations

_{G}is the velocity of center of mass. Simplification of Equation (1) was done by assuming the fact that the buoy movement is divided into two main parts; rotational and translational with total 6 degrees of freedom. Hence, by assuming the buoy as a rigid body, all of the movement takes place in the center of mass. In this study, the “o” index introduced the buoy center of mass. Equation (3) shows the buoy movement velocity [27].

#### 2.4. Boundary Conditions and Grid Generation

#### 2.5. Machine Learning LSTM Method of Prediction

_{t}

_{−1}introduces the output vector of the last time step; and X

_{t}shows the input vector of the current time step.

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Arutyunov, V.S.; Lisichkin, G.V. Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels? Russ. Chem. Rev.
**2017**, 86, 777–804. [Google Scholar] [CrossRef] - Perera, F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int. J. Environ. Res. Public Health
**2018**, 15, 16. [Google Scholar] [CrossRef] [PubMed][Green Version] - Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and solution technologies for the integration of variable renewable energy sources—A Review. Renew. Energy
**2020**, 145, 2271–2285. [Google Scholar] [CrossRef] - Aderinto, T.; Li, H. Ocean wave energy converters: Status and challenges. Energies
**2018**, 11, 1250. [Google Scholar] [CrossRef][Green Version] - Jiang, B.; Li, X.; Chen, S.; Xiong, Q.; Chetn, B.-F.; Parker, R.G.; Zuo, L. Performance analysis and tank test validation of a hybrid ocean wave-current energy converter with a single power takeoff. Energy Convers. Manag.
**2020**, 224, 113268. [Google Scholar] [CrossRef] - Ahamed, R.; McKee, K.; Howard, I. Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Eng.
**2020**, 204, 107248. [Google Scholar] [CrossRef] - Ocean Energy Systems. Annual Report Ocean Energy Systems 2016. Ocean Energy Systems Website. 2017. Available online: https://report2016.ocean-energy-systems.org (accessed on 21 December 2020).
- Ruehl, K.; Forbush, D.D.; Yu, Y.-H.; Tom, N. Experimental and numerical comparisons of a dual-flap floating oscillating surge wave energy converter in regular waves. Ocean Eng.
**2020**, 196, 106575. [Google Scholar] [CrossRef] - Giorgi, G.; Gomes, R.P.; Henriques, J.C.; Gato, L.M.; Bracco, G.; Mattiazzo, G. Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: Numerical simulations and validation with physical model tests. Appl. Energy
**2020**, 276, 115421. [Google Scholar] [CrossRef] - Shahriar, T.; Habib, M.A.; Hasanuzzaman, M.; Shahrear-Bin-Zaman, M. Modelling and optimization of Searaser wave energy converter based hydroelectric power generation for Saint Martin’s Island in Bangladesh. Ocean Eng.
**2019**, 192, 106289. [Google Scholar] [CrossRef] - Reikard, G.; Robertson, B.; Bidlot, J.-R. Wave energy worldwide: Simulating wave farms, forecasting, and calculating reserves. Int. J. Mar. Energy
**2017**, 17, 156–185. [Google Scholar] [CrossRef] - Pena-Sanchez, Y.; Garcia-Abril, M.; Paparella, F.; Ringwood, J.V. Estimation and forecasting of excitation force for arrays of wave energy devices. IEEE Trans. Sustain. Energy
**2018**, 9, 1672–1680. [Google Scholar] [CrossRef][Green Version] - Sang, Y.; Karayaka, H.B.; Yan, Y.; Yilmaz, N.; Souders, D. 1.18 Ocean (Marine) Energy. In Comprehensive Energy Systems; Dincer, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 733–769. [Google Scholar]
- Reikard, G.; Robertson, B.; Bidlot, J.-R. Combining wave energy with wind and solar: Short-term forecasting. Renew. Energy
**2015**, 81, 442–456. [Google Scholar] [CrossRef] - Bento, P.; Pombo, J.; Mendes, R.; Calado, M.; Mariano, S. Ocean wave energy forecasting using optimised deep learning neural networks. Ocean Eng.
**2021**, 219, 108372. [Google Scholar] [CrossRef] - Ni, C.; Ma, X. Prediction of wave power generation using a convolutional neural network with multiple inputs. Energies
**2018**, 11, 2097. [Google Scholar] [CrossRef][Green Version] - Liu, Z.; Wang, Y.; Hua, X. Prediction and optimization of oscillating wave surge converter using machine learning techniques. Energy Convers. Manag.
**2020**, 210, 112677. [Google Scholar] [CrossRef] - Li, L.; Gao, Y.; Ning, D.; Yuan, Z.M. Development of a constraint non-causal wave energy control algorithm based on artificial intelligence. Renew. Sustain. Energy Rev.
**2020**, 138, 110519. [Google Scholar] [CrossRef] - Gómez-Orellana, A.M.; Fernández, J.C.; Dorado-Moreno, M.; Gutiérrez, P.A.; Hervás-Martínez, C. Building suitable datasets for soft computing and machine learning techniques from meteorological data integration: A case study for predicting significant wave height and energy flux. Energies
**2021**, 14, 468. [Google Scholar] [CrossRef] - Butt, F.M.; Hussain, L.; Mahmood, A.; Lone, K.J. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands. Math. Biosci. Eng.
**2020**, 18, 400–425. [Google Scholar] [CrossRef] [PubMed] - Cheng, Y.; Xu, C.; Mashima, D.; Thing, V.L.; Wu, Y. PowerLSTM: Power demand forecasting using long short-term memory neural network. In Proceedings of the International Conference on Advanced Data Mining and Applications, Singapore, 5–6 November 2017; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Lin, Z.; Cheng, L.; Huang, G. Electricity consumption prediction based on LSTM with attention mechanism. IEEJ Trans. Electr. Electron. Eng.
**2020**, 15, 556–562. [Google Scholar] [CrossRef] - Ni, C.; Ma, X.; Wang, J. Integrated deep learning model for predicting electrical power generation from wave energy converter. In Proceedings of the 2019 25th International Conference on Automation and Computing, Lancaster, UK, 5–7 September 2019. [Google Scholar]
- He, J. Coherence and cross-spectral density matrix analysis of random wind and wave in deep water. Ocean Eng.
**2020**, 197, 106930. [Google Scholar] [CrossRef] - Smith, A. Pumping Device. Patent Application Publication. U.S. Patent US 2013/0052042 A1, 28 February 2013. [Google Scholar]
- Pedrycz, W.; Skowron, A.; Kreinovich, V. Handbook of Granular Computing; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bhinder, M.; Mingham, C.; Causon, D.; Rahmati, M.; Aggidis, G.; Chaplin, R. Numerical and experimental study of a surging point absorber wave energy converter. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009. [Google Scholar]
- Gomes, R.P.; Henriques, J.C.; Gato, L.M.; Falcão, A.D. Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion. Renew. Energy
**2012**, 44, 328–339. [Google Scholar] [CrossRef] - Hirt, C. Flow-3D User’s Manual; Flow Sciences, Inc.: Leland, NC, USA, 1988. [Google Scholar]
- Elsayed, M.A. Wavelet bicoherence analysis of wind–wave interaction. Ocean Eng.
**2006**, 33, 458–470. [Google Scholar] [CrossRef] - Babajani, A. Hydrodynamic performance of a novel ocean wave energy converter. Am. J. Fluid Dyn.
**2018**, 8, 73–83. [Google Scholar] - López, E.; Valle, C.; Allende, H.; Gil, E.; Madsen, H. Wind power forecasting based on echo state networks and long short-term memory. Energies
**2018**, 11, 526. [Google Scholar] [CrossRef][Green Version] - Duan, Y.; Yisheng, L.; Wang, F.-Y. Travel time prediction with LSTM neural network. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 1–4 November 2016. [Google Scholar]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol.
**2015**, 54, 187–197. [Google Scholar] [CrossRef] - Li, H. (Ed.) Wave Energy Potential, Behavior and Extraction; MDPI: Basel, Switzerland, 2020. [Google Scholar]
- Nezhad, M.M.; Groppi, D.; Rosa, F.; Piras, G.; Cumo, F.; Garcia, D.A. Nearshore wave energy converters comparison and Mediterranean small island grid integration. Sustain. Energy Technol. Assess.
**2018**, 30, 68–76. [Google Scholar]

**Figure 8.**The linearization of scatter data within the correlation of different parameters with each other.

Title | 1 | 2 | 3 |
---|---|---|---|

Mesh block (Number 1) | |||

Total number of elements | 7,000,000 | 5,000,000 | 1,000,000 |

Run time | 5 days 7 h | 4 days 1 h | 2 days 20 h |

The accuracy of Searaser displacement parameter | 95% | 93% | 85% |

LSTM Parameters | Recent Study Parameters |
---|---|

${C}_{t-1}$ | Input parameters 1. Wave height 2. Time 3. Wind slow velocity 4. Number |

${h}_{t}$ | Output parameters 1. Generated power |

Analysis Variables | RSME Value |
---|---|

Power output, wave height | 0.56 |

Power output, simulation time | 0.42 |

Power output, wave height, simulation time | 0.49 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mousavi, S.M.; Ghasemi, M.; Dehghan Manshadi, M.; Mosavi, A.
Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory. *Mathematics* **2021**, *9*, 871.
https://doi.org/10.3390/math9080871

**AMA Style**

Mousavi SM, Ghasemi M, Dehghan Manshadi M, Mosavi A.
Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory. *Mathematics*. 2021; 9(8):871.
https://doi.org/10.3390/math9080871

**Chicago/Turabian Style**

Mousavi, Seyed Milad, Majid Ghasemi, Mahsa Dehghan Manshadi, and Amir Mosavi.
2021. "Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory" *Mathematics* 9, no. 8: 871.
https://doi.org/10.3390/math9080871