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Abstract: Successful development of a marine wave energy converter (WEC) relies strongly on
the development of the power generation device, which needs to be efficient and cost-effective.
An innovative multi-input approach based on the Convolutional Neural Network (CNN) is
investigated to predict the power generation of a WEC system using a double-buoy oscillating
body device (OBD). The results from the experimental data show that the proposed multi-input
CNN performs much better at predicting results compared with the conventional artificial network
and regression models. Through the power generation analysis of this double-buoy OBD, it shows
that the power output has a positive correlation with the wave height when it is higher than 0.2 m,
which becomes even stronger if the wave height is higher than 0.6 m. Furthermore, the proposed
approach associated with the CNN algorithm in this study can potentially detect the changes that
could be due to presence of anomalies and therefore be used for condition monitoring and fault
diagnosis of marine energy converters. The results are also able to facilitate controlling of the
electricity balance among energy conversion, wave power produced and storage.

Keywords: wave energy converter; power prediction; ocean energy; artificial neural network;
deep learning; convolutional neural network

1. Introduction

Increases in energy demand and recent concerns regarding climate change necessitate developing
reliable and alternative energy technologies in order to make society’s development sustainable.
Wave energy, as an enormous potential and inexhaustible source of energy, still remains widely
untapped [1]. Until now, a variety of wave energy devices have bloomed based on different types of
technologies. Most of them absorb energy from the wave height and the water depth. The location for
a WEC system typically include shoreline, near-shore and offshore [2]. With the contribution from
the improved technological support, various types of concepts/prototypes to extract wave energy
from ocean have emerged in recent years. However, the technical level is still in an immature stage [3].
In other words, despite the high technology readiness level (TRL) achieved by some devices (level
eight) [4], their commercial readiness still needs to be proven. Following the pace of offshore wind
energy development, it is a priority to understand the operation and performance of WECs in order to
progressively demonstrate these devices under ocean conditions and increase electricity generation.
The performance was considered as not only for redesign, but also for operation and maintenance.

So far, more than 1000 WECs have been patented worldwide. They can be classified into
three categories [5]: oscillating water column (OWC) devices [6], oscillating body systems [7],
and overtopping converters [8]. Among them, a mechanical interface is required to convert the
intermittent multi-direction motion into a continuous one-direction motion and the hydraulic motors
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represent one of the most frequently equipped transmissions in the oscillating body systems [9].
The schematic diagram of a typical hydraulic oscillating body system is shown in Figure 1.
A WEC is typically formed by three stages when converting wave energy into electrical energy.
This includes (a) a front interface, the portion of a device that directly interacts with the incident waves,
(b) a power take-off (PTO) system used to transform the front-end energy into other forms of energy,
like mechanical energy, and (c) an electrical energy generation system that takes the responsibility to
do the final conversion. In the wind energy industry, the supervisory control and data acquisition
(SCADA) system, which records hundreds of variables related to operational parameters, is installed
in most modern wind farms [10]. Compared with wind turbines, the data available from WECs are
not as abundant in quantity because of the presently immature ocean wave technologies. However,
it is worth mentioning that acquiring data from the operating WECs is more difficult than the wind
turbines because of not only the harsh ocean conditions but also the high cost.

In the operation and performance domain, a reliable power forecast plays a crucial role in reducing
the need of controlling energy, integrating the highly volatile production, planning unit commitment,
scheduling and dispatching by system operators, and maximizing advantage by electricity traders.
In addition, the accurate prediction of wave loads, motion characteristics and power requirements are
significantly important for the design of WEC converters [11]. For the grid, the accurate prediction of
wave energy is considered as a major improvement of reliability in large-scale wave power integration
and of managing the variability of wave generation and the electricity balance on the grid. As a result,
monitoring and predicting the power output of the WEC system based on sensor data from each part
of the system become increasingly valuable. The fast growth of machine learning (ML) and deep
learning technologies associated with statistical analysis give wings to the forecast and evaluation.
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Figure 1. Schematic diagram of the wave power generation system.

Traditionally, wave height and direction can be forecast by either statistical techniques or
physics-based models [12,13]. There are many examples of the wave forecast system based on physical
models. For example, the European Centre for Medium-Range Weather Forecast (ECMWF) and the
WAVEWATCH-III organizations have performed predictions using wind data from the Global Data
Assimilation Scheme (GDAS), Ocean weather and Gulf of Mexico [14]. The statistical approaches such
as neural networks and regression-based techniques have also made great progresses [15]. By contrast,
the physics-based wave forecasting models are widely used due to the mature technology and adequate
historical data. Wave prediction can take advantage of opportunities from the rapid development
in recent years of wind power prediction. Many algorithms, approaches and methods have been
developed in the statistical model domain in renewable energy prediction, such as wind power and
solar power prediction. So far, artificial neural network (ANN) methodology has been applied to
predict short–mid-term solar power for a 750 W solar photovoltaic (PV) panel [16]. A least-square (LS)
support vector machine (SVM)-based model was applied for short-term forecasting of the atmospheric
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transmissivity, thus determining the magnitude of solar power [17]. Very short-term wind power
predictions problems were addressed in the wind power industry by developing the neural network
(NN) model and the SVM, boosting tree, random forest, k-nearest neighbour algorithms [18,19].
The data-based models with wind speed, wind generator speed, voltage and current in all phases as
inputs could achieve an accurate prediction of the wind power output [20]. For medium-term and
long-term wind power prediction, ANN models, adaptive fuzzy logistic and multilayer perceptrons
are the most popular kinds of methods [21–23]. Moreover, as the deep learning algorithms bloom,
the CNN, long short term memory (LSTM), Deep Brief Net (DBN) and recurrent neural network (RNN)
modelling have become popular in some renewable energy predictions. A deep RNN was modelled to
forecast the short-term electricity load at different levels of the power systems. Deep multi-layered
neural model has been reported to evaluate the electricity generation output from a wind farm 1 day in
advance. A novel hybrid deep-learning network associated with an empirical wavelet transformation
and two kinds of RNN was employed to make the accurate prediction of the wind speed and wind
energy [24–26].

The primary intention of this work is to illustrate the power prediction and performance of a
hydraulic WEC operating in the open sea condition for more than two months based on statistical
analysis and physical modelling technologies. A multi-input approach based on CNN is presented
to predict the power output at a particular coastal area. The CNN network reaches considerable
achievement in terms of image and video recognition as well as language processing. One of the
novelties is that the algorithms capable of converting the multi-input time series data into 2-dimension
(2D) images play a unique role in the construction of CNN model. The performance turns out to
be remarkably better than other models, indicating its strong feasibility and suitability for power
prediction. In addition, the connection between converter, hydraulic system, generator, and the grid
will be clarified through analysing the wave, hydraulic motor pressure, and electrical data.

For this purpose, this paper is organized as follows: Section 2 gives the details of the device and
the measurement datasets used in the paper and presents the performance of the WEC. Section 3
describes the methodology of CNN algorithm in details. In Section 4, performance and results of the
proposed model are presented. Finally, Section 5 summarizes the conclusions from the study.

2. Operation and Performance Analysis

2.1. Data Acquisition

Normally, there are three conversion stages to extract wave energy from the ocean. These include:
(a) capture of the kinetic energy by the power capture system of WEC, (b) conversion into mechanical
energy by the PTO and then into electrical power by generators, such as direct-drive linear generators;
(c) storage of the electricity in batteries or transport to a grid. The data used in this study were acquired
from a demonstration WEC deployed in open sea conditions in a near-shore area. This WEC contains
data from a double-buoy hydraulic OBD with ten kW level capacity collected from February to April
2017. As shown in Figure 2, the WEC contains an oscillating buoy system and comprises of four
main parts, i.e., power capture, hydraulic motor, generator and power transmission. The oscillating
buoy captures kinetic energy through its up-and-down motions of the ocean waves. The hydraulic
motor and generator are responsible for converting the kinetic energy into electricity and transfer it
to land through a sea cable. In the first conversion, the wave energy is captured by two oscillating
buoys while a hydraulic pressure system is deployed in the second conversion. The power capture
system uses hydraulic rams installed inside the two oscillating buoys. This 10 kW WEC prototype
was invented by a research institution in 2016 and underwent its first sea tests at a testing station in
SanYa, Hainan Province, China in 2017. The two oscillating buoys were installed on the edge of a
dock side by side where they were fixed together and moved up and down simultaneously according
to the wave conditions. The wave conditions in this area change significantly during the different
seasons. The simulation data from the numerical model show that the mean wave height reaches
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0.7 m in summer with a major south direction. The wave height in winter is much higher than in
summer, with a 2.0 m maximum height and a northeast direction [27]. The real wave heights were
observed by an optical wave meter and recorded daily every 4 h from 8:00 to 18:00 from February
to April 2017. The real data show the maximum wave height was approximately 1.1 m during the
observation period.
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Figure 2. Schematic diagram of the hydraulic oscillating body system.

Approximately 20 readings for various pressures, speed, voltage and current signals were
recorded at a one-minute interval. These readings were classified into three groups: resource
data, hydraulic data and electrical data. In the hydraulic group, the four readings (hydraulic flow,
hydraulic pressure, motor speed and motor torque) are most significantly associated with the power
output and will be used in the study. The pre-process of data is necessary to eliminate digital and
constant signals and filter out those data collected when the WEC is inactive or abnormal. There are
gaps existed between the data normally because the generator is inactive. These occasions may be
caused by the periods of low wave energy and harsh condition; some abnormal values within the data
caused by disturbing signals and power failure also need to remove. Figure 3 shows the measurement
data of these four variables after pre-processing.
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2.2. Power Curves

The extraction energy efficiency of wave energy varies wildly for different WECs because of the
individual technology features. Typically, the extraction energy efficiency between the wave resource
and hydraulic system can be calculated by dividing the wave resource by the power achieved by the
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hydraulic system, which depends on the level of maturity of the devices. The wave resource can be
calculated by the equation below:

Pres =
ρg2H2

m0Te

64π
(1)

where Pres stands for the power input from wave power, ρ stands for the density of sea water, g stands
for the acceleration of gravity, Hm0 stands for the wave height in zero-order moment of the spectral
function. Since the wave period were not been measured during the testing, present method uses the
Te (energy period) as a period parameter, defined as:

Te =
m−1

m0
(2)

where m−1 stands for the minus-one spectral moments, m0 stands for the zeroth spectral moments [28,29].
The input and output power of the hydraulic system can be calculated by Equations (3) and

(4) respectively:
Pt = pre×Q (3)

where Pt stands for the input power of the hydraulic system; pre stands for pressure and Q stands for
the flow.

P =
M× n
9550

(4)

where P stands for the power output of the hydraulic system; M stands for torque and n stands
for speed.

With the wave height, input and output power of the hydraulic system being known,
the wave-power curves of this device can be drawn, elaborating the relationship between wave
height and active power output from the hydraulic system, as illustrated in Figure 4. The green dots
denote the input power while the blue dots represent the power output. It can be observed that both
the power input and output tend to maintain a positive correlation with the wave height when it
is higher than 0.2 m. The positive correlation diverges when the wave height is higher than 0.6 m.
In general, these trends coincide with calculations using the wave energy [30] that varies with the
square of wave height. It can also be seen that the device remains inactive when the wave height is
below approximately 0.25 m, indicating the start wave height of this device is 0.25 m. When comparing
these two power curves, it is found that the efficiency from wave energy to hydraulic power output
shows little difference between 0.2 m and 0.6 m. Nevertheless, it increases smoothly when the wave
height is higher than 0.6 m; this could reveal the mechanism of input and output power efficiency of
this particular device.
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2.3. Energy Conversion Efficiency

The efficiency of a PTO system is vital to determine the stability and reliability of the device.
Of the current WEC concepts developed so far, 42% use hydraulic systems to increase the overall
efficiency of the converters and the electric performance [31]. For this WEC, the efficiencies from
three parts, i.e., hydraulic system, electrical generator and electricity storage, were evaluated using
historical data. The data were averaged every 4 h for an entire day of 24 h (six groups’ data each day).
The average efficiency of the hydraulic system E f is calculated by P/Pt. Here, P represents the average
conversion efficiency from the power input while Pt represents the average conversion efficiency from
the power generation.

It can be seen from Figure 5 that the efficiencies of the hydraulic system, electrical generator and
electricity storage show similar tendencies. The hydraulic system demonstrates the highest efficiency
between 70% and 80% during the hydraulic conversion. The electrical storage efficiency is slightly
lower than that of the hydraulic system, between 60% and 75%. The electrical generator consumes the
largest proportion of the energy and remains at 30% to 45% efficiency. Evidently, all three efficiencies
grow rapidly following the peak of wave height nearby 10 m at 300 samples. The discrepancy between
300 and 350 samples might be due to shortness of the wave direction and data period. It is considered
that the high efficiency level may be caused by the wave period, which is appropriate for the converters.
The wave direction also causes variation of the energy efficiency because the geographic terrain and
conditions can amplify the wave height and concentrate wave energy on a particular position [32].
The curves also suggest that the generating conversion has the greatest potential for improvement.
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Figure 5. The comparison of different conversion efficiencies from the hydraulic system, electrical
generator and electricity storage.

Finally, the wave height-efficiency curve can be drawn, as shown in Figure 6, which successfully
shows the correlations between the wave height and the hydraulic power. It is observed that
the hydraulic conversion efficiency increases sharply as the wave height grows at the beginning.
The change gradient becomes low when the wave height increases to between 0.5 m and 0.8 m, and it
remains almost stable after 0.8 m. The curve also illustrates some of the most important characteristic
of this WEC, such as the start wave height and rated wave height.
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3. Methodology

3.1. Convolutional Neural Networks

Due to the 1-dimension (1D) time series data from WEC may ignore vital information between
time intervals, we applied a novel CNN algorithm, which convert 1D input data into 2D images.
Traditionally, autoregressive models (AM), Linear Dynamical Systems (LDS), and the popular
Hidden Markov Model (HMM) represent the classic approaches for modelling sequential time series
data. The parameters to be predicted are used as perceptual judgements and features to do the
classification [33]. However, deep learning, which is derives from ML is able to learn high-level
abstractions in data by utilizing hierarchical architectures [34]. As one of the deep learning algorithms,
the CNN method has been considered one of the most appropriate methods to address the predicting
problems. It has addressed plenty of problems in terms of sequential learning and shown its great
potential in recent years [35]. The input and output data of the network observed in this paper is
considered as a multiple data source, showing the connections between different parts of the device.
The wave represents the original driver of the whole generation system, which could not be predicted
accurately. This novel CNN approach shows advantages on prediction of the physical variables and
makes considerable improvements in terms of the standard deviation and mean absolute values of
the prediction performance. It also outperforms ML by a significant margin in forecasting stability
and accuracy.

Different from the linear maps applied by ANNs, CNN considers a particular form of
convolutional layers (or convolutional filters). Linear functions used by the convolutional filters convert
the input data into images in a sliding-window fashion [36]. Among the many deep neural networks,
the CNN demonstrates excellent performance in the field of image processing, which comprises
convolutional layers, pooling layer, and fully connected layers [37]. In addition, there are many
advantages to apply CNNs. This is because: (a) the connections of receptive fields are able to reduce
plenty of parameters, (b) the replication of each filter shares the same parameters (weight vector and
bias) and forms a feature map and (c) the diverse positions along the network are participated to
compute features using convolution activations statistics [38,39].

3.2. Network Architecture

This network structure is formed by four hidden layers and the relevant hyper-parameters are
shown in Figure 7. The values of the hyper-parameters used in the network are listed in Table 1.
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The input layer is four time series of observations collected from the hydraulic system of a WEC.
The 1D to 2D conversion layer is used to rearrange one image set by the four series of observations
mentioned in Section 2.1. The size of input layer is set to 28× 28 pixels because 28 pixels are the default
value of digital image in traditional CNN. The convolution layer performs convolution operations with
the kernel size of 5 × 5 to acquire feature maps of the image. The dimension of the first convolution
layer is set as 24 × 24 × 25, which convolutes an input image size from 28 × 28 pixels (25 layers set by
experience). All the convolution layers are connected to the Rectified Linear Unit (ReLU) activation
functions instead of sigmoid function because ReLU is faster and can reduce likelihood of vanishing
gradient [40]. We use the max-pooling layer 2 × 2 and second convolution layers (5 × 5 kernel size
and 25 layers as well). Finally, the dimension of the fully connected layer is set as 40, followed by a
predict layer as required.
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Table 1. List of the values of hyper-parameters used in this network.

Hyper-Parameters Values

Input variables 4
CNN Layers 25

Fully Connected Layer 40
Predict Layer 1

Batch size 20
Number of Epochs 100

The activation function of the predict layer is a linear function (identity function, i.e., y = x)
because the values are unbounded in terms of regression.

The CNN is trained using the least absolute deviations (L1) as the loss function to minimize the
absolute differences between the jth target value d(j)

0 and the jth estimated value d(j)
t of this network.

The loss function L1 is defined as:

S =
n

∑
j=0

∣∣∣d(j)
0 − d(j)

t

∣∣∣ (5)

where n denotes the size of the dataset.
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Convolution Layer

The convolution layer is comprised from a two-layer feed-forward NN. The NN uses a convolution
algorithm to extract the feature maps from original image [41]. As mentioned above, the neurons
in the same layer have no connections. But the neurons in different layers are deployed in order to
simplify the feed forward process, as well as back propagation. Noticeably, the weights and feature
map are convolved in the previous layer. An activation function is used to generate the current layer
and output feature maps. The convolution layer is calculated as follows:

ai,j = f

(
2

∑
m=0

2

∑
n=0

wm,nxi+m,j+n + wb

)
(6)

where xi,j denotes a specific element in the input image, wm,n denotes the weight in mth row nth
column, wb represents bias of the filter, ai,j is the element of the feature map. Notice that the ReLU
function is chosen as the output activation function f .

Pooling Layers

Pooling layers are typically used immediately after convolution layers to simplify the information.
Traditionally, convolution layers associate with pooling layers for the sake of constructing stable
structures and preserving characteristics. Another advantage of applying pooling layers is that it
is able to save modelling time remarkably. There are many pooling methods available such as max
pooling and average pooling. We thus focus on average pooling, which in fact allows us to see the
connection with multi-resolution analysis. Given an input x = (x0, x1, . . . , xn−1) ∈ Rn, average pooling
outputs a vector of a fewer components y = (y0, y1, . . . , ym−1) ∈ Rm as:

yj =
1
p

p−1

∑
k=0

xp,j+k (7)

where p defines the support of pooling and m = n/p. For example, p = 2 means that we reduce the
number of outputs to a half of the inputs by taking pair-wise averages.

Fully connected Layers

Usually the fully connected layer is located at the last hidden layer of the CNN. It is a linear
function and is able to concentrate all representations at the highest order into a single vector.

Specifically, it is easy to change the highest order representations, P ∈ RKh×d×p for,
Ph

1 , . . . , Ph
Kh

(
assuming Ph

k ∈ Rd×p
)

, into a vector, then convert it with a dense matrix H ∈ R(Kh×d×p)×n

and apply non-linear activation:
x̂ = α

(
pT H

)
(8)

where x̂ ∈ Rn can be seen as the final extracted feature vector. The values in matrix H are parameters
optimized during training. The n denotes a hyper-parameter and the representation size of the
model [42].

Prediction Layers

Linear predict layers are used to forecast the final results after obtaining the feature vector x̂ir:

yir = [1, x̂T ]·W (9)

The values in vector w will be optimized during training.
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Back Propagation Algorithm

The back propagation (BP) algorithm applies with stochastic gradient descent (SGD) and usually
addresses the power prediction issues. The parameter weights and biases are often used in the CNN.
The BP is able to minimize the residuals Em between the prediction and the target using following
equation:

Em =
1
m

m

∑
i=1

d

∑
j=1

(
hi

j − yi
j

)2
(10)

where Em represents squared-error loss function. The weights W and different biases b, β, c can be
undated using following rules:

W = W − η·∂Em/∂W (11)

b = b− η·∂Em/∂b (12)

β = β− η·∂Em/∂β (13)

c = c− η·∂Em/∂c (14)

where ∂Em/∂W, ∂Em/∂b, ∂Em/∂β and ∂Em/∂c repressent the partial derivatives of the loss function in
terms of W, b, β and c.

3.3. Model Performance Metrics

Three mainstream performance metrics are considered here to evaluate the accuracy of forecasting,
which are root mean square error (RMSE), the mean absolute error (MAE) and the coefficient of
determination (R2). For the RMSE, it is more sensitive to a large deviation between the forecasted
values and the actual values. The MAE, on the other side, performs the absolute difference value
between the forecasts and the actual values. The MAE also describes the magnitude of an error from
the forecast on average. RMSE and MAE are calculated by Equations (15) and (16):

RMSE =
1√
N

√√√√ N

∑
i=1

(
I(pred,i) − Imeas,i

)2
(15)

MAE =
1
N

N

∑
I=1

∣∣∣I(pred,i) − Imeas,i

∣∣∣ (16)

Here the coefficient of determination is employed to optimize the appropriate model structure,
calculated as follows:

R2
T = 1− σ2

e
σ2

y
(17)

where σ2
e denotes the variance of the residuals between model predict and the actual output, also known

as sample residuals and σ2
y denotes the variance of the actual output. It is clear that the R2

T
becomes unity when the residuals turn into low values, meaning the network presents a considerable
performance of the actual output. By contrast, when the R2

T tends to zero, it means the variances
become similar, thus producing an inappropriate fit [43].

4. Results and Discussions

4.1. Dataset

The datasets used in the model are normally divided into three categories: training set, validation
set and test set. The model uses the training set as examples for learning, which is to calculate the
parameters (i.e., bias) of the classifier. The validation set is used to tune the parameters of a classifier,
for example, to choose the number of hidden units in a neural network. The test set is used only
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to evaluate the achievement of a specified classifier [44]. While training a CNN, the parameters are
always determined by the validation data. Then the test dataset is applied to the network and finally
the full error for this test set can be found.

The data used in the CNN include four sequential inputs and one output. Four parameters
(hydraulic pressure, hydraulic flow, motor speed and motor torque) from the hydraulic system are
taken as the inputs of the CNN and the power generation is the output of the network. Here, the total
100,352 samples acquired from February to April 2017 are sequentially separated into 80,281 as the
training dataset (80%), 5019 as the validation dataset (5%) and 15,052 as the test dataset (15%). Firstly,
the four time series inputs should be rearranged to a 2D image before applying CNN for regression
and prediction. Four different conversion methods are attempted to achieve a better training accuracy,
including: (a) results averaged by the individual CNN of the four inputs; (b) four inputs sequentially
rearranged before training; (c) a single 2D image being divided into four sub-images formed by four
inputs respectively; (d) an image rearranged by four inputs in sequence, as shown in Figure 8.
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4.2. Results

This section introduces the results of evaluation of the wave power generation prediction
model. Different proposed patterns converted from inputs by various methods are compared firstly.
Different input image sizes (28× 28, 20× 20, 14× 14, 10× 10 pixels) are deployed to discuss how image
size could affect the forecasting results. Curve fitting plots from each conversion method are presented
for the sake of revealing fitting details. In order to demonstrate the superiority of the methods, the CNN
model is employed along with different mainstream supervised modelling approaches, such as ANN,
SVM, linear Regression (LR) and regression tree (RT). Finally, the RMSE, MAE and R2 are used as the
metrics to evaluate the prediction performance from multiple criteria perspectives.

For both conversion methods and image sizes, as can be seen in Table 2, the proposed networks
provide various results in terms of the predicting accuracy. From RMSE and MAE, the 3rd and 4th
methods demonstrate the much lower values compared with the 1st and 2nd methods, implying mean
lower residuals and higher accuracy are achieved. All three metrics show that the larger the image size
and the better performance, and a considerable improvement is made by the 4th method (28 × 28),
with the best R2 of 0.96 value being achieved. Results also show that a larger image contains more
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information compared with an input image of medium and small size, no matter which conversion
method is used. In addition, the 3rd and 4th conversion methods obtain lower RMSE and MAE values
and a higher R2 value. The forecast from the 2nd method represents the poorest fit with these raw data.

Table 2. Prediction performance of the CNN model through different image sizes and methods.

Image Size
1st Conversion

Method
2nd Conversion

Method
3rd Conversion

Method
4th Conversion

Method
RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

28 × 28 10.02 8.05 0.95 23.48 21.19 0.85 3.37 2.23 0.94 3.11 1.92 0.96
20 × 20 16.43 8.64 0.91 29.46 23.67 0.77 3.63 1.84 0.94 3.76 2.14 0.93
12 × 12 20.48 9.63 0.87 25.21 19.82 0.83 4.45 2.81 0.91 4.25 2.45 0.92

The four plots shown in Figure 9 demonstrate the result as well. The predicted curves fit the
real output well in all four plots, except for the top right one that represents the 2nd conversion
method. In the top left subplot, the two curves fit much better at the high power level than the low
level. The bottom subplots both show remarkable fitting results when forecasting these distinctive
fluctuations. The results also illustrate that similar characteristics are extracted from images created by
the different data arrange algorithms. Clearly, the top right subplot obtained with the 2nd conversion
method, i.e., four inputs applied to the model respectively, exhibits poor fitting in both high and low
power levels.
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Figure 10 illustrates 2D images of the network input converted from time series 1D inputs.
The converted image corresponds to a grey-scale image and every pixel represents the amount of
brightness of light [45]. Obviously, the bottom images contain much more features, as can be seen
from lines and part of rectangles, which can be recognized by the multi-input CNN model. In contrast,
we cannot extract much information from the top images because the features are totally disorganized
for the model. This phenomenon explains why different arrangement of pixels in the input image
can lead to quite different results, and the more features captured from the inputs, the better results
provided from network.
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4.3. Discussions

In terms of validation and accuracy, different supervised modelling approaches are applied for
comparison, and the results are shown in Table 3. This work was implemented based on a Xeon
E3-1271 CPU workstation operating at 3.6 GHz and equipped with 16 GB RAM (Lancaster University,
Lancaster, UK) . The training time for the multi-input Convolutional Neural Network (MCNN) was
compared with that taken for ML algorithms mentioned above. The SVM takes on an average of 583 s,
which means the longest time among them. The CNN algorithm trains no more than 43 s if using
the hyper-parameters in Table 1. The MT and BT got an average of 7.21 s and 11.26 s respectively,
almost four times faster than the CNN. This indicates that the CNN model provides much higher
accuracy even a little longer time consumed than the ML algorithms.

Table 3. The performance of CNN compared with different supervised modelling approaches (28 × 28
dimension size).

Approaches RMSE MAE R2 Time (s)

ANN 2144.83 11.38 0.83 39.19
SVM 34.88 27.10 0.69 583
RLR 35.15 27.30 0.69 4.68
MT 23.36 12.92 0.86 7.21
BT 20.83 12.49 0.89 11.26

CNN 3.11 1.92 0.96 42.85
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Table 3 also provides sufficient evidence that CNN made considerable achievement in wave
power prediction among these ML algorithms. The indicators of the difference between actual and
forecast values become quite small if the CNN model is used. SVM and Robust Linear Regression
(RLR) produce the worst performance as the MAE value is much higher (more than twice the others)
among the five models, which mean these performance measures are much bigger and forecast errors
may be easily expected. The R2 values of ANN, medium tree (MT) and boosted tree (BT) show general
fitting results. It is worth mentioning that the training of ANN and CNN take a little longer time (more
than 43 s in this situation) and the time greatly depends on hidden layers, epochs and break time of
the network.

It is known that the form of data modelled in CNN is widely applied in 2D images, which include
connection from the neighbourhood [46]. The more features captured from the training images,
the better the performance provided by the model. The four image patterns (data arrangements)
trained in the different CNN models show distinctive features contained in their images. The large
size images contain more features than the small size ones. The prediction is affected by not only
the current inputs, but also the connections in the same input series and the adjacent input series
in between. In other words, the current inputs combined with adjacent pixels could provide more
information than a single input. Let’s take the 4th conversion method as an example, in time t, the xt

2
is affected by xt−1

2 , xt+1
2 and xt

1, xt
3, as shown in Figure 11.
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In addition, the number of the convolution layers and feature extractor layers also need to be
discussed. Intuitively it would seem that increasing the number of feature maps and convolution
layers would improve the accuracy of the model, but actually it works under many conditions.
We attempted to increase the number of the convolution layer and pooling layer from 1 to 3 and the
feature map from 10 to 100. The neurons for the fully connected layer were also increased from 10 to
100, and the number of layers increased from 1 to 3. Eventually, the training model consumed much
more time, though the anticipated results did not appear to be much improved compared with the
initial architecture. Consequently, we consider the architecture used in this article is superior enough
for training and predicting such a complex problem.

Furthermore, the residual between actual and practical values is supposed to be a function of
the inputs. The result is able to perform an early warning to indicate the possible appearance of the
anomalies if the residual exceeds a predefined threshold. Thus, this MCNN model could perform
condition monitoring and fault diagnosis for the ocean energy systems.

5. Conclusions

In this paper, the power characteristics of a double-buoy oscillating body WEC are presented by
analysing open sea testing data. The wave-power curve and the efficiencies of the hydraulic system
are investigated to elaborate the connection between wave height and instantaneous power output of
the WEC. A Convolutional Neural Network with multiple inputs has been developed for predicting
the power output of the near-shore WEC. It uses four hydraulic system parameters as inputs, i.e.,
hydraulic pressure, hydraulic flow, motor speed and motor torque, and the power output as output.
The proposed CNN applies 1D to 2D data conversion to convert time series data into image data.
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This result shows that the MCNN provides much better prediction results compared with other
mainstream supervised modelling approaches, such as ANN, SVM, LR and RT, with the highest R2

value achieved being 0.96. It can also be found that both the image size and the conversion method
can affect the results. The intersectional methods for data conversion with a larger dataset size can
capture more features from the training images, thus providing a better model fitting performance.
The proposed MCNN is therefore feasible enough for training and predicting the power output from a
complex system such as the WEC studied in this paper based on the experimental data.

Besides the time-domain analysis, time-frequency analysis using wavelet transform has also been
attempted based on the same data [47,48], the results were found to be widely divergent, and further
work will be performed in the near future. Nevertheless, this work makes progress on managing the
power generation, transformation and storage of a WEC system for ocean renewable energy systems.
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Abbreviations

WEC wave energy converter
OBD oscillating body device
CNN Convolutional Neural Network
MCNN Multi-input Convolutional Neural Network
TRL technology readiness level
OWC oscillating water column
PTO power take-off
SCADA supervisory control and data acquisition
ML machine learning
ECMWF European Centre for Medium-Range Weather Forecast
GDAS Global Data Assimilation Scheme
ANN artificial neural network
PV photovoltaic
LS least-square
SVM support vector machine
NN neural network
LSTM long short term memory
DBN Deep Brief Net
RNN recurrent neural network
1D 1-dimension
2D 2-dimension
AM autoregressive models
LDS Linear Dynamical Systems
HMM Hidden Markov Model
ReLU Rectified Linear Unit
BP back propagation
SGD stochastic gradient descent
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RMSE root mean square error
MAE mean absolute error
R2 coefficient of determination
LR Linear Regression
RT regression tree
RLR Robust Linear Regression
MT medium tree
BT boosted tree
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