Portability of Predictive Academic Performance Models: An Empirical Sensitivity Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.3. Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero, C.; Ventura, S. Educational data mining and learning analytics: An updated survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1355. [Google Scholar] [CrossRef]
- Dawson, S.; Joksimovic, S.; Poquet, O.; Siemens, G. Increasing the Impact of Learning Analytics. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge, Tempe, AZ, USA, 4–8 March 2019; pp. 446–455. [Google Scholar] [CrossRef]
- Ferguson, R. Learning analytics: Drivers, developments and challenges. Int. J. Technol. Enhanc. Learn. 2012, 4, 304–317. [Google Scholar] [CrossRef]
- Siemens, G.; Baker, R. Learning analytics and educational data mining: Towards communication and collaboration. In ACM International Conference Proceeding Series; Association for Computing Machinery (ACM): New York, NY, USA, 2012; pp. 252–254. [Google Scholar] [CrossRef]
- Siemens, G.; Long, P. Penetrating the fog: Analytics in learning and education. EDUCAUSE Rev. 2011, 5, 30–32. [Google Scholar] [CrossRef]
- Booth, M. Learning analytics: The new black. EDUCAUSE Rev. 2012, 47, 52–53. [Google Scholar]
- Papamitsiou, Z.; Economides, A. Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Educ. Technol. Soc. 2014, 17, 49–64. [Google Scholar]
- Jayaprakash, S.; Moody, E.W.; Lauria, E.J.M.; Regan, J.R.; Baron, J.D. Early alert of academically at-risk students: An open source analytics initiative. J. Learn. Anal. 2014, 1, 6–47. [Google Scholar] [CrossRef] [Green Version]
- Fenollar, P.; Cuestas, P.J.; Román, S. University students’ academic performance: An integrative conceptual framework and empirical analysis. Br. J. Educ. Psychol. 2007, 77, 873–891. [Google Scholar] [CrossRef]
- Garbanzo Vargas, G.M. Factores asociados al rendimiento académico en estudiantes universitarios, una reflexión desde la calidad de la educación superior pública. Rev. Educ. 2007, 31, 43–63. [Google Scholar] [CrossRef]
- Kuh, G.D.; Kinzie, J.; Buckley, J.A.; Bridges, B.K.; Hayek, J.C. Commissioned report for the National Symposium on Postsecondary Student Success: Spearheading a Dialog on Student Success. In What Matters to Student Success: A Review of the Literature; National Postsecondary Education Cooperative: Washington, DC, USA, 2006. [Google Scholar]
- Gasevic, D.; Dawson, S.; Rogers, T.; Gasevic, D. Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. Internet High. Educ. 2016, 28, 68–84. [Google Scholar] [CrossRef] [Green Version]
- Elander, K.; Cronje, J.C. Paradigms revisited: A quantitative investigation into a model to integrate objectivism and constructivism in instructional design. Educ. Technol. Res. Dev. 2016, 64, 389–405. [Google Scholar] [CrossRef]
- Kuhn, D. Is direct instruction an answer to the right question? Educ. Psychol. 2007, 42, 109–113. [Google Scholar] [CrossRef]
- Schwartz, D.L.; Bransford, J.D. A time for telling. Cognit. Instr. 1998, 16, 475–522. [Google Scholar] [CrossRef]
- Schwartz, D.L.; Martin, T. Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognit. Instr. 2004, 22, 129–184. [Google Scholar] [CrossRef]
- Tobias, S.; Duffy, T.M. The Success or Failure of Constructivist Instruction. An Introduction. In Constructivist Instruction: Success or Failure? Tobias, S., Duffy, T.M., Eds.; Routledge/Taylor & Francis Group: New York, NY, USA, 2009; pp. 3–10. [Google Scholar]
- Sweller, J.; Kirschner, P.A.; Clark, R.E. Why Minimally Guided Teaching Techniques Do Not Work: A Reply to Commentaries. Educ. Psychcol. 2007, 42, 115–121. [Google Scholar] [CrossRef]
- Kim, J.S. The effects of a constructivist teaching approach on student academic achievement, self-concept, and learning strategies. Asia Pac. Educ. Rev. 2005, 6, 7–19. [Google Scholar] [CrossRef]
- Krahenbuhl, K.S. Student-Centered education and constructivism: Challenges, concerns, and clarity for teachers. Clear. House 2016, 89, 97–105. [Google Scholar] [CrossRef]
- Zain, S.F.H.S.; Rasidi, F.E.M.; Abidin, I.I.Z. Student-centred learning in mathematics–constructivism in the classroom. J. Int. Educ. Res. 2012, 8, 319–328. [Google Scholar] [CrossRef]
- Educational Project Pontifical University of Comillas. Available online: https://www.comillas.edu/Documentos/PROYECTO_EDUCATIVO.pdf (accessed on 1 April 2021).
- Muñoz San Roque, I.; Martínez Felipe, M. Enfoques de aprendizaje, expectativas de autoeficacia y autorregulación, ¿las metodologías de enseñanza utilizadas en el proyecto piloto del EEES en E2 afectan a la calidad del aprendizaje? In El Espacio Europeo de Educación Superior, ¿un cambio deseable para la Universidad?: Algunas experiencias de innovación docente en la titulación de Administración y Dirección de Empresas en ICAI-ICADE COMILLAS; Muñoz San Roque, I., Ed.; Pontifical University of Comillas: Madrid, Spain, 2012; pp. 47–104. [Google Scholar]
- Vallejo, P.M. Implicaciones para el profesor de una enseñanza centrada en el alumno. Misc. Comillas 2006, 64, 11–38. [Google Scholar]
- Hoy, A.; Davis, H.; Anderman, E. Theories of learning and teaching in TIP. Theory Pract. 2013, 52, 9–21. [Google Scholar] [CrossRef]
- Garrett, L.; Huang, L.; Charleton, M.C. A framework for authenticity in the mathematics and statistics classroom. Math. Educ. 2016, 25, 32–55. [Google Scholar]
- Wood, D.; Bruner, J.S.; Ross, G. The role of tutoring in problem solving. J. Child Psychol. Psychiatry 1976, 17, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Turner, J. Using instructional discourse analysis to study the scaffolding of student self-regulation. Educ. Psychol. 2002, 37, 17–25. [Google Scholar] [CrossRef]
- Belland, B.R.; Kim, C.M.; Hannafin, M.J. A framework for designing scaffolds that improve motivation and cognition. Educ. Psychol. 2013, 48, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Karagiorgi, Y.; Symeou, L. Translating constructivism into instructional design: Potential and limitations. Educ. Technol. Soc. 2005, 8, 17–27. [Google Scholar]
- Mangaroska, K.; Giannakos, M. Learning analytics for learning design: A systematic literature review of analytics-driven design to enhance learning. IEEE Trans. Learn. Technol. 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ortigosa, A.; Carro, R.M.; Bravo-Agapito, J.; Lizcano, D.; Alcolea, J.J.; Blanco, O. From lab to production: Lessons learnt and real-life challenges of an early student-dropout prevention system. IEEE Trans. Learn. Technol. 2019, 12, 264–271. [Google Scholar] [CrossRef]
- Yorke, M. Formative assessment in higher education: Moves towards theory and the enhancement of pedagogic practice. High. Educ. 2003, 45, 477–501. [Google Scholar] [CrossRef]
- Nicol, D.; Macfarlane, D. Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. Stud. High. Educ. 2006, 31, 199–218. [Google Scholar] [CrossRef]
- Huang, S.; Fang, N. Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Comput. Educ. 2013, 61, 133–145. [Google Scholar] [CrossRef]
- Gitinabard, N.; Xu, Y.; Heckman, S.; Barnes, T.; Lynch, C.F. How widely can prediction models be generalized? Performance prediction in blended courses. IEEE Trans. Learn. Technol. 2019, 12, 184–197. [Google Scholar] [CrossRef] [Green Version]
- López-Zambrano, J.; Lara, J.A.; Romero, C. Towards Portability of Models for Predicting Students’ Final Performance in University Courses Starting from Moodle Logs. Appl. Sci. 2020, 10, 354. [Google Scholar] [CrossRef] [Green Version]
- Conijn, R.; Snijders, C.; Kleingeld, A.; Matzat, U. Predicting student performance from LMS data: A comparison of 17 blended courses using Moodle LMS. IEEE Trans. Learn. Technol. 2017, 10, 17–29. [Google Scholar] [CrossRef]
- Olivé, D.M.; Huynh, D.Q.; Reynolds, M.; Dougiamas, M.; Wiese, D. A quest for a one-size-fits-all neural network: Early prediction of students at risk in online courses. IEEE Trans. Learn. Technol. 2019, 12, 171–183. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Hunt, X.J.; Kabul, I.K.; Silva, J. Transfer learning for education data. In Proceedings of the ACM SIGKDD Conference, El Halifax, NS, Canada, 17 August 2017. [Google Scholar]
- Schneider, M.; Preckel, F. Variables associated with achievement in higher education: A systematic review of meta-analyses. Psychol. Bull. 2017, 143, 565–600. [Google Scholar] [CrossRef] [PubMed]
- Martínez de Ibarreta, C.; Rua Vieites, A.; Redondo Palomo, R.; Fabra Florit, M.E.; Nuñez Partido, A.; Martín Rodrigo, M.J. Influencia del nivel educativo de los padres en el rendimiento académico de los estudiantes de la ADE. Un enfoque de género. In Investigaciones de Economía de la Educación; Mancebón Torrubia, M.J., Pérez Ximénez de Embún, D., Gómez Sancho, J.M., Giménez Esteban, G., Eds.; Asociación de Economía de la Educación: Las Palmas, Spain, 2010; Volume 5, pp. 1273–1296. Available online: http://repec.economicsofeducation.com/2010zaragoza/05-64.pdf (accessed on 4 February 2021).
- Tejedor, F.J. Poder explicativo de algunos determinantes del rendimiento en los estudios universitarios. Rev. Esp. Pedag. 2003, 224, 5–32. [Google Scholar]
- McKenzie, K.; Schweitzer, R. Who succeeds at university? Factors predicting academic performance in first year Australian university students. High. Educ. Res. Dev. 2001, 20, 21–33. [Google Scholar] [CrossRef] [Green Version]
- García-Diez, M. The effects of curriculum reform on economics education in a Spanish college. Educ. Econ. 2000, 8, 5–15. [Google Scholar] [CrossRef]
- Harbury, C.D.; Szreter, R. The influence upon university performance of the study of economics at school. J. R. Stat. Soc. Ser. A 1968, 131, 384–409. [Google Scholar] [CrossRef]
- Didia, D.; Hasnat, B. The determinants of performance in the university introductory finance course. Financ. Pract. Educ. 1998, 8, 102–107. [Google Scholar]
- Ballard, C.L.; Johnson, M.F. Basic math skills and performance in an introductory economics class. J. Econ. Educ. 2004, 35, 3–23. [Google Scholar] [CrossRef]
- Girón Cruz, L.; González Gómez, D.E. Determinantes del rendimiento académico y la deserción estudiantil, en el programa de economía de la Pontificia Universidad Javeriana de Cali. Rev. Econ. Gest. Y Desarro. 2005, 3, 173–201. [Google Scholar]
- Shieh, G. Clarifying the role of mean centring in multicollinearity of interaction effects. Br. J. Math. Stat. Psychol. 2011, 64, 462–477. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.; Schumacker, R.E. Interaction effects: Centering, variance inflation factor, and interpretation issues. Mult. Linear Regres. Viewp. 2009, 35, 6–11. [Google Scholar]
- Sarlija, N.; Bilandzic, A.; Stanic, M. Logistic regression modelling: Procedures and pitfalls in developing and interpreting prediction models. Croat. Oper. Res. Rev. 2018, 8, 631–652. [Google Scholar] [CrossRef] [Green Version]
- Ortega Calvo, M.; Cayuela Domínguez, A. Regresión logística no condicionada y tamaño de muestra: Una revisión bibliográfica. Rev. Esp. Salud Pública 2002, 76, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning, 8th ed.; Springer: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Signorell, A.; Aho, K.; Alfons, A.; Anderegg, N.; Aragon, T.; Zeileis, A. DescTools: Tools for Descriptive Statistics. R Package Version 0.99.28. 2019. Available online: https://rdrr.io/cran/DescTools/ (accessed on 4 February 2021).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Müller, M. pROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Barrigüete, J.L.; Tirado, G.; Mahíllo-Fernández, I.; Ramírez, P.J. Predictors of performance in Business Administration degrees: The effect of the high-school specialty. Rev. Educ. 2020, 390, 125–148. [Google Scholar] [CrossRef]
- Widyahastuti, F.; Tjhin, V.U. Performance Prediction in Online Discussion Forum: State-of-the-art and comparative analysis. Procedia Comput. Sci. 2018, 135, 302–314. [Google Scholar] [CrossRef]
- Thakar, P.; Mehta, A.; Manisha. Performance Analysis and Prediction in Educational Data Mining: A Research Travelogue. Int. J. Comput. Appl. 2015, 110, 60–68. [Google Scholar]
- Muthukrishnan, S.M.; Govindasamy, M.K.; Mustapha, M.N. Systematic mapping review on student’s performance analysis using big data predictive model. J. Fundam. Appl. Sci. 2017, 9, 730–758. [Google Scholar] [CrossRef] [Green Version]
Group | Subject | Professor | Language | |
---|---|---|---|---|
BG (Statistics) | Reference group | |||
BG (Fin. Mathematics) | Yes | Yes | ||
G2 (Statistics) | Yes | Yes | ||
G3 (Statistics) | Yes | Yes | ||
G2 (Fin. Mathematics) | Yes | |||
G3 (Fin. Mathematics) |
High School | Comparison of EvAU Grades | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grade | Shapiro Test | Levene Test | Anova | |||||||||
N | Science | Others | Mean | SD | W | p-Value | F | p-Value | F | FG | p-Value | |
BG | 39 | 43.6% | 56.4% | 7.76 | 0.90 | 0.98 | 0.65 | 1.48 | 0.22 | 0.76 | 3 | 0.52 |
G3 | 52 | 34.6% | 65.4% | 7.84 | 0.86 | 0.97 | 0.16 | |||||
G2 | 79 | 35.4% | 64.6% | 7.93 | 0.88 | 0.98 | 0.22 |
EvAU | 1st Course Grade | Math. 1 Grade | Math. 2 Grade | Early Evaluation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TV = 0.5 | TV = 0.9 | TV = 0.5 | TV = 0.9 | TV = 0.5 | TV = 0.9 | TV = 0.5 | TV = 0.9 | TV = 0.5 | TV = 0.9 | ||
1st course grade | - | 0.83 | 0.78 | ||||||||
Interaction | 0.83 | 0.78 | |||||||||
Math. 1 grade | 0.86 | 0.76 | |||||||||
Math. 2 grade | 0.83 | 0.84 | |||||||||
Early evaluation | 0.88 | 0.83 | |||||||||
Late evaluation | 0.83 | 0.81 | |||||||||
Math. 1 grade | - | 0.86 | 0.76 | 0.87 | 0.74 | ||||||
Interaction | 0.89 | 0.80 | 0.92 | 0.74 | |||||||
1st course grade | 0.86 | 0.76 | |||||||||
Math. 2 grade | 0.83 | 0.84 | 0.87 | 0.69 | |||||||
Early evaluation | 0.94 | 0.81 | 0.93 | 0.83 | |||||||
Late evaluation | 0.87 | 0.79 | 0.90 | 0.77 | |||||||
Math. 2 grade | - | 0.81 | 0.78 | 0.84 | 0.61 | 0.88 | 0.58 | ||||
Interaction | 0.81 | 0.78 | 0.87 | 0.58 | 0.86 | 0.65 | |||||
1st course grade | 0.83 | 0.84 | |||||||||
Math. 1 grade | 0.81 | 0.78 | |||||||||
Early evaluation | 0.81 | 0.83 | 0.90 | 0.80 | 0.91 | 0.86 | |||||
Late evaluation | 0.83 | 0.81 | 0.88 | 0.79 | 0.88 | 0.72 | |||||
Early evaluation | - | 0.86 | 0.86 | 0.93 | 0.85 | 0.93 | 0.88 | 0.85 | 0.83 | ||
Interaction | 0.86 | 0.86 | 0.93 | 0.90 | 0.93 | 0.86 | 0.88 | 0.83 | |||
1st course grade | 0.88 | 0.83 | |||||||||
Math. 1 grade | 0.94 | 0.81 | |||||||||
Math. 2 grade | 0.81 | 0.84 | |||||||||
Late evaluation | 0.84 | 0.81 | 0.90 | 0.86 | 0.88 | 0.82 | 0.83 | 0.82 | |||
Late evaluation | - | 0.81 | 0.81 | 0.88 | 0.78 | 0.88 | 0.74 | 0.78 | 0.62 | 0.85 | 0.84 |
Interaction | 0.83 | 0.81 | 0.85 | 0.78 | 0.88 | 0.77 | 0.77 | 0.59 | 0.88 | 0.87 | |
1st course grade | 0.83 | 0.81 | |||||||||
Math. 1 grade | 0.87 | 0.79 | |||||||||
Math. 2 grade | 0.83 | 0.81 | |||||||||
Early evaluation | 0.84 | 0.81 |
Model 1 | Parameter | Odds | z Value | p-Value | VIF | DW Test | |
DW | p-Value | ||||||
Constant | 4.51 | 90.92 | 2.83 | 4.7 × 10−3 | 1.92 | 0.68 | |
1st course grade | 3.09 | 21.91 | 2.06 | 0.04 | 1.02 | ||
Early evaluation | 0.57 | 1.77 | 2.30 | 0.02 | 1.02 | ||
R2 Nagelkerke | 0.68 | ||||||
Model 2 | Parameter | Odds | z Value | p-Value | VIF | DW Test | |
DW | p-Value | ||||||
Constant | 4.01 | 55.29 | 3.12 | 1.8 × 10−3 | 1.94 | 0.70 | |
1st course grade | 1.88 | 6.54 | 1.50 | 0.13 | 1.10 | ||
Early evaluation | 0.13 | 1.14 | 0.35 | 0.73 | 1.90 | ||
Interaction | −0.79 | 0.45 | −1.45 | 0.15 | 1.79 | ||
R2 Nagelkerke | 0.72 | ||||||
Model 3 | Parameter | Odds | z Value | p-Value | VIF | DW Test | |
DW | p-Value | ||||||
Constant | 2.96 | 19.30 | 2.90 | 3.7 × 10−3 | 2.15 | 0.67 | |
Math. 1 grade | 1.31 | 3.70 | 2.05 | 0.04 | 1.01 | ||
Early evaluation | 0.51 | 1.66 | 2.26 | 0.02 | 1.01 | ||
R2 Nagelkerke | 0.63 | ||||||
Model 4 | Parameter | Odds | z Value | p-Value | VIF | DW Test | |
DW | p-Value | ||||||
Constant | 3.51 | 33.45 | 2.87 | 4.1 × 10−3 | 2.04 | 0.98 | |
Math. 1 grade | 0.98 | 2.66 | 1.56 | 0.12 | 1.64 | ||
Early evaluation | 0.31 | 1.37 | 1.12 | 0.26 | 1.32 | ||
Interaction | −0.57 | 0.57 | −1.88 | 0.06 | 1.30 | ||
R2 Nagelkerke | 0.74 |
Group | Subject | Professor | Language | Model 1 | Model 2 | Model 3 | Model 4 | ||
---|---|---|---|---|---|---|---|---|---|
BG (Statistics) Pass: 82% | TV: 0.5 | (92%/94%/86%) | (95%/97%/86%) | (92%/94%/86%) | (97%/100%/86%) | ||||
TV: 0.9 | (87%/88%/86%) | (87%/88%/86%) | (85%/84%/86%) | (87%/88%/86%) | |||||
BG (Fin. Math.) Pass: 64% | Yes | Yes | TV: 0.5 | (59%/92%/7%) | (61%/96%/7%) | (72%/100%/27%) | (70%/100%/20%) | ||
TV: 0.9 | (74%/79%/67%) | (74%/83%/60%) | (95%/92%/100%) | (79%/88%/67%) | |||||
G2 (Statistics) Pass: 71% | Yes | Yes | TV: 0.5 | (78%/96%/40%) | (77%/98%/32%) | (78%/94%/44%) | (76%/94%/36%) | ||
TV: 0.9 | (86%/94%/68%) | (84%/96%/60%) | (78%/81%/72%) | (84%/93%/64%) | |||||
G3 (Statistics) Pass: 77% | Yes | Yes | TV: 0.5 | (79%/95%/25%) | (77%/95%/17%) | (75%/83%/50%) | (83%/95%/42%) | ||
TV: 0.9 | (83%/90%/58%) | (83%/93%/50%) | (71%/68%/83%) | (75%/78%/67%) | |||||
G2 (Fin. Math.) Pass: 59% | Yes | TV: 0.5 | (67%/100%/21%) | (66%/100%/18%) | (70%/99%/30%) | (68%/99%/27%) | |||
TV: 0.9 | (77%/98%/48%) | (74%/97%/42%) | (67%/78%/52%) | (68%/89%/39%) | |||||
G3 (Fin. Math.) v: 77% | TV: 0.5 | (83%/98%/33%) | (81%/100%/17%) | (73%/88%/25%) | (75%/93%/17%) | ||||
TV: 0.9 | (83%/95%/42%) | (81%/93%/42%) | (75%/80%/58%) | (65%/75%/33%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arroyo-Barrigüete, J.L.; Carabias-López, S.; Curto-González, T.; Hernández, A. Portability of Predictive Academic Performance Models: An Empirical Sensitivity Analysis. Mathematics 2021, 9, 870. https://doi.org/10.3390/math9080870
Arroyo-Barrigüete JL, Carabias-López S, Curto-González T, Hernández A. Portability of Predictive Academic Performance Models: An Empirical Sensitivity Analysis. Mathematics. 2021; 9(8):870. https://doi.org/10.3390/math9080870
Chicago/Turabian StyleArroyo-Barrigüete, Jose Luis, Susana Carabias-López, Tomas Curto-González, and Adolfo Hernández. 2021. "Portability of Predictive Academic Performance Models: An Empirical Sensitivity Analysis" Mathematics 9, no. 8: 870. https://doi.org/10.3390/math9080870
APA StyleArroyo-Barrigüete, J. L., Carabias-López, S., Curto-González, T., & Hernández, A. (2021). Portability of Predictive Academic Performance Models: An Empirical Sensitivity Analysis. Mathematics, 9(8), 870. https://doi.org/10.3390/math9080870