The Convergence Rate of High-Dimensional Sample Quantiles for φ-Mixing Observation Sequences
Abstract
:1. Introduction
2. Main Results
- (i)
- Let the Assumption 1 hold for . If and , thenfor small , where
- (ii)
- Let the Assumption 2 hold for . If and , then, for any positive number and small ,for any small positive numbers satisfying , wherefor .
3. Preliminary Lemmas
4. Proofs of Main Results
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, R.N.; Waymire, E.C. Stochastic Processes with Applications; John Wiley & Sons Inc.: New York, NY, USA, 1990; p. xvi+672. [Google Scholar]
- Jondeau, E.; Rockinger, M. Testing for differences in the tails of stock-market returns. J. Empir. Financ. 2003, 10, 559–581. [Google Scholar] [CrossRef] [Green Version]
- Nolan, J.P. Modeling financial data with stable distributions. In Handbook of Heavy Tailed Distributions in Finance; Svetlozar, T.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 105–130. [Google Scholar]
- Ando, T.; Bai, J. Quantile co-movement in financial markets: A panel quantile model with unobserved heterogeneity. J. Am. Stat. Assoc. 2020, 115, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Sim, N. Modeling the dependence structures of financial assets through the Copula Quantile-on-Quantile approach. Int. Rev. Financ. Anal. 2016, 48, 31–45. [Google Scholar] [CrossRef]
- Ibragimov, R.; Prokhorov, A. Heavy tails and copulas: Limits of diversification revisited. Econom. Lett. 2016, 149, 102–107. [Google Scholar] [CrossRef]
- McNeil, A.J.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques and Tools, Revised ed.; Princeton University Press: Princeton, NJ, USA, 2015; p. xix+699. [Google Scholar]
- Howard, S.R.; Ramdas, A. Sequential estimation of quantiles with applications to a/b-testing and best-arm identification. arXiv 2019, arXiv:1906.09712. [Google Scholar]
- Yang, W.Z.; Wang, X.J.; Li, X.Q.; Hu, S.H. Berry–esséen bound of sample quantiles for φ-mixing random variables. J. Math. Anal. Appl. 2012, 388, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.Z.; Wang, X.J.; Hu, S.H. A Note on the Berry–Esséen bound of sample quantiles for ϕ-mixing sequence. Comm. Statist. Theory Methods 2014, 43, 4187–4194. [Google Scholar] [CrossRef]
- Yang, W.Z.; Hu, S.H.; Wang, X.J. The Bahadur representation for sample quantiles under dependent sequence. Acta Math. Appl. Sin. 2019, 35, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Chen, P.; Li, Y. Statistical inference for a heteroscedastic regression model with φ-mixing errors. Commun. Stat. Simul. Comput. 2020, 1–19. [Google Scholar] [CrossRef]
- Wang, W.J.; Hu, S.H.; Shen, Y.; Yang, W.Z. Moment inequality for φ-mixing sequences and its applications. J. Inequal. Appl. 2009, 2009, 379743. [Google Scholar]
- Xi, M.; Wang, X. On the rates of asymptotic normality for recursive kernel density estimators under ϕ-mixing assumptions. J. Nonparametr. Stat. 2019, 31, 340–363. [Google Scholar] [CrossRef]
- Rio, E. Asymptotic Theory of Weakly Dependent Random Processes; Springer: Berlin, Germany, 2017; p. xviii+204. [Google Scholar]
- Wang, X.J.; Wang, S.J.; Wang, R. Exponential inequalities for sums of unbounded φ-mixing sequence and their applications. Comm. Statist. Theory Methods 2017, 46, 457–464. [Google Scholar] [CrossRef]
- Ibragimov, I.A. Some limit theorems for stationary processes. Theory Probab. Appl. 1962, 7, 349–382. [Google Scholar] [CrossRef]
- Yang, S.C. Almost sure convergence of weighted sums of mixing sequences. J. Syst. Sci. Math. Sci. 1995, 15, 254–265. (In Chinese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Han, D. The Convergence Rate of High-Dimensional Sample Quantiles for φ-Mixing Observation Sequences. Mathematics 2021, 9, 647. https://doi.org/10.3390/math9060647
Peng L, Han D. The Convergence Rate of High-Dimensional Sample Quantiles for φ-Mixing Observation Sequences. Mathematics. 2021; 9(6):647. https://doi.org/10.3390/math9060647
Chicago/Turabian StylePeng, Ling, and Dong Han. 2021. "The Convergence Rate of High-Dimensional Sample Quantiles for φ-Mixing Observation Sequences" Mathematics 9, no. 6: 647. https://doi.org/10.3390/math9060647
APA StylePeng, L., & Han, D. (2021). The Convergence Rate of High-Dimensional Sample Quantiles for φ-Mixing Observation Sequences. Mathematics, 9(6), 647. https://doi.org/10.3390/math9060647