Four Types of Fixed-Point Theorems for Multifunctions in Probabilistic Metric Spaces †
Abstract
:1. Introduction
2. Triangular Norms
- ()
- (commutativity);
- ()
- (associativity);
- ()
- (monotonicity);
- ()
- (boundary condition),
- (i)
- Minimum where
- (ii)
- Product with
- (iii)
- ukasiewicz t-norm given by
3. Probabilistic Metric Spaces
- A distance distribution function is a non-decreasing function with the following properties:
- (i)
- and
- (ii)
- it is left continuous on
denotes the family of all them; - A triangle function τ is a commutative, associative, and non-decreasing in each place binary operation on that has Dirac function given by:
- (i)
- ;
- (ii)
- for ;
- (iii)
- ;
- (iv)
- .
- ;
- ;
- ;
- .
4. Fixed-Point Theorems in Probabilistic Metric Spaces
5. First Fixed-Point Theorem
6. Second Fixed-Point Theorem
- (i)
- f is weakly demicompact;
- (ii)
- There are , , and such that:
7. Third Fixed-Point Theorem
- (i)
- (ii)
- For every , we have that then there exists such that
- (i)
- There exist two sequences and such that for every and
- (ii)
- The mapping f is densifying on M with respect to the function γ, where
8. Fourth Fixed-Point Theorem
9. Further Investigations
10. Conclusions
Funding
Conflicts of Interest
References
- Agarwal, P.; Jleli, M.; Samet, B. Fixed Point Theory in Metric Spaces: Recent Advances and Applications; Springer: Berlin, Germany, 2018. [Google Scholar]
- Pathak, H.K. An Introduction to Nonlinear Analysis and Fixed Point Theory; Springer: Berlin, Germany, 2018. [Google Scholar]
- Kirk, W.A.; Sims, B. Handbook of Metric Fixed Point Theory; Springer: Berlin, Germany, 2001. [Google Scholar]
- Dugundji, J.; Granas, A. Fixed Point Theory; Springer: Berlin, Germany, 2003. [Google Scholar]
- Brown, R.F. (Ed.) Fixed Point Theory and Its Applications; American Mathematical Society: Providence, RI, USA, 1988. [Google Scholar]
- Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
- Hu, S.; Papageorgiou, N.S. Handbook of Multivalued Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; Volume I. [Google Scholar]
- Hildebrand, W. Core and Equilibria of a Large Economy; Princeton University Press: Princeton, NJ, USA, 1974. [Google Scholar]
- Hu, S.; Papageorgiou, N.S. Handbook of Multivalued Analysis, Vol. II (Applications); Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Gavriluţ, A.; Pap, E. Regular Non-Additive Multimeasures. Fundaments and Applications; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Schweizer, B.; Sklar, A. Probabilistic Metric Spaces; Elsevier: Dordrecht, The Netherlands; New York, NY, USA, 1983. [Google Scholar]
- Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475–478. [Google Scholar] [CrossRef]
- Itoh, S. A random fixed-point theorem for a multivalued contraction mapping. Pac. J. Math. 1977, 68, 85–90. [Google Scholar] [CrossRef]
- Hadžić, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Kluwer: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2001. [Google Scholar]
- Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Kluwer: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2000. [Google Scholar]
- Pap, E. Null-Additive Set Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Hadžić, O. Fixed-point theorems for multivalued probabilistic (Ψ)-contractions. Indian J. Pure Appl. Math. 1994, 25, 825–835. [Google Scholar]
- Hadžić, O. Fixed-point theorems for multivalued mappings in probabilistic metric spaces. Mat. Vesnik 1979, 3, 125–133. [Google Scholar] [CrossRef]
- Itoh, S. Some fixed-point theorems in metric spaces. Fund. Math. 1979, 102, 109–117. [Google Scholar] [CrossRef]
- Pai, D.V.; Veeramani, P. Fixed-point theorems for multimappings. Yokohama Math. J. 1980, 28, 7–14. [Google Scholar]
- Hicks, T.L. Fixed-point theory in probabilistic metric spaces. Univ. Novom Sadu Rad. Prirod.-Mat. Fak. Ser. Mat. 1983, 13, 63–72. [Google Scholar]
- Hicks, T.L. Fixed-point theorems for multivalued mappings. II. Indian J. Pure Appl. Math. 1998, 29, 133–137. [Google Scholar]
- Patle, P.; Patel, D.; Aydi, H.; Radenović, S. 3ON H+Type Multivalued Contractions and Applications in Symmetric and Probabilistic Spaces. Mathematics 2019, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Argoubi, H.; Jleli, M.; Samet, B. The study of fixed points for multivalued mappings in a Menger probabilistic metric space endowed with a graph. Fixed Point Theory Appl. 2015, 2015, 113. [Google Scholar] [CrossRef] [Green Version]
- Kelisky, R.P.; Rivlin, T.J. Iterates of Bernstein polynomials. Pac. J. Math. 1967, 21, 511–520. [Google Scholar] [CrossRef]
- Beitollahi, A.; Azhdari, P. Multi-valued (ψ,ϕ,ε,λ)-contraction in probabilistic metric space. Fixed Point Theory Appl. 2012. Available online: http://www.fixedpointtheoryandapplications.com/content/2012/1/10 (accessed on 8 February 2012).
- Klement, E.P.; Mesiar, R.; Pap, E. Problems on triangular norms and related operators. Fuzzy Sets Syst. 2004, 145, 471–479. [Google Scholar] [CrossRef]
- Alsina, C.; Frank, J.; Schweizer, B. Associative Functions on Intervals: Triangular Norms and Copulas; World Scientific Publishing Co.: Singapore, 2006. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pap, E. Four Types of Fixed-Point Theorems for Multifunctions in Probabilistic Metric Spaces. Mathematics 2021, 9, 3212. https://doi.org/10.3390/math9243212
Pap E. Four Types of Fixed-Point Theorems for Multifunctions in Probabilistic Metric Spaces. Mathematics. 2021; 9(24):3212. https://doi.org/10.3390/math9243212
Chicago/Turabian StylePap, Endre. 2021. "Four Types of Fixed-Point Theorems for Multifunctions in Probabilistic Metric Spaces" Mathematics 9, no. 24: 3212. https://doi.org/10.3390/math9243212