On Jungck–Branciari–Wardowski Type Fixed Point Results
Abstract
:1. Introduction and Preliminaries
2. Main Result
- (i)
- is complete,
- (ii)
- is complete, i is continuous and is compatible.
- (i)
- is a complete metric space;
- (ii)
- is complete metric space, i is continuous and is compatible pair of self-mappings on
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jungck, G. Commuting maps and fixed points. Am. Math. Mon. 1976, 83, 261–263. [Google Scholar] [CrossRef]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Aljančić, S. Uvod u Realnu i Funkcionalnu Analizu; Naučna Knjiga: Beograd, Serbia, 1969. (In Serbian) [Google Scholar]
- Rudin, W. Principles of Mathematical Analysis; MCGRAW-Hill Book Company: New York, NY, USA; San Francisco, CA, USA; Toronto, ON, USA; London, UK, 1964. [Google Scholar]
- Secelean, N.A. Iterated function system consisting of F-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [Google Scholar] [CrossRef] [Green Version]
- Turinci, M. Wardowski implicit contractions in metric spaces. arXiv 2013, arXiv:1211.3164v2. [Google Scholar]
- Radenović, S.; Vetro, F.; Vujaković, J. An alternative and easy approach to fixed point results via simulation functions. Demonstr. Math. 2017, 5, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Radenović, S.; Chandok, S. Simulation type functions and coincidence points. Filomat 2018, 32, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Vujaković, J.; Radenović, S. On some F− contraction of Piri-Kumam-Dung type mappings in metric spaces. Vojnoteh. Glas. Tech. Cour. 2020, 68, 697–714. [Google Scholar] [CrossRef]
- Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2002, 29, 531–536. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Kang, S.M. Fixed point theorems of contractive mappings of integral type. Fixed Point Theory Appl. 2013, 2013, 300. [Google Scholar] [CrossRef] [Green Version]
- Jungck, G. Common fixed points for noncontinuous nonself maps on non-metric spaces. Far East J. Math. Sci. (FJMS) 1996, 4, 199–215. [Google Scholar]
- Jungck, G.; Rhoades, B.E. Fixed point for set valued functions without continuity. Indian J. Pure Appl. Math. 1998, 29, 227–238. [Google Scholar]
- Abbas, M.; Jungck, G. Common fixed point results for non-commuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl. 2008, 341, 416–420. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, R.M.; Grandolfi, M. Transformazioni di tipo contracttivo generalizzato in uno spazio metrico. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 1968, 45, 212–216. [Google Scholar]
- Ćirić, L.B. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003. [Google Scholar]
- Collaco, P.; Silva, J.C. A complete comparison of 23 contraction conditions. Nonlinear Anal. TMA 1997, 30, 471–476. [Google Scholar] [CrossRef]
- Consentino, M.; Vetro, P. Fixed point result for F-contractive mappings of Hardy-Rogers-Type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Dey, L.K.; Kumam, P.; Senapati, T. Fixed point results concerning α− F−contraction mappings in metric spaces. Appl. Gen. Topol. 2019, 20, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Fabijano, N.; Parvaneh, V.; Mirković, D.; Paunović, L.; Radenović, S. On F-contraction of Jungck-Ćirić-Wardowski-type mappings in metric spaces. Cogent Math. Stat. 2020, 7, 1792699. [Google Scholar] [CrossRef]
- Karapınar, E.; Fulga, A.; Agarwal, R.P. A survey: F-contractions with related fixed point results. J. Fixed Point Theory Appl. 2020, 22, 69. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Kang, S.M.; Cho, S.Y. Fixed point theorems for mappings satisfying contractive conditions of integral type and applications. Fixed Point Theory Appl. 2011, 2011, 64. [Google Scholar] [CrossRef] [Green Version]
- Piri, P.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef] [Green Version]
- Proinov, P.D. A generalization of the Banach contraction principle with high order of convergence of successive approximations. Nonlinear Anal. 2007, 67, 2361–2369. [Google Scholar] [CrossRef]
- Proinov, P.D. Fixed point theorems for generalized contractive mappings in metric spaces. J. Fixed Point Theory Appl. 2020, 22, 21. [Google Scholar] [CrossRef]
- Popescu, O.; Stan, G. Two fixed point theorems concerning F-contraction in complete metric spaces. Symmetry 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Skoff, F. Teoremi di punto fisso per applicazioni negli spazi metrici. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 1977, 111, 323–329. [Google Scholar]
- Vujaković, J.; Mitrović, S.; Pavlović, M.; Radenović, S. On recent results concerning F−contraction in generalized metric spaces. Mathematics 2020, 8, 767. [Google Scholar] [CrossRef]
- Vujaković, J.; Ljajko, E.; Radojević, S.; Radenović, S. On Jungck-Fisher-Wardowski type fixed point results. Symmetry 2020, 12, 2048. [Google Scholar] [CrossRef]
- Vujaković, J.; Mitrović, S.; Mitrović, Z.D.; Radenović, S. On F−contractions for weak α-admissible mappings in metric-like spaces. Mathematics 2020, 8, 1629. [Google Scholar] [CrossRef]
- Wardowski, D.; Van Dung, N. Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math. 2014, 47, 146–155. [Google Scholar] [CrossRef]
- Wardowski, D. Solving existence problems via F-contractions. Proc. Am. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carić, B.; Došenović, T.; George, R.; Mitrović, Z.D.; Radenović, S. On Jungck–Branciari–Wardowski Type Fixed Point Results. Mathematics 2021, 9, 161. https://doi.org/10.3390/math9020161
Carić B, Došenović T, George R, Mitrović ZD, Radenović S. On Jungck–Branciari–Wardowski Type Fixed Point Results. Mathematics. 2021; 9(2):161. https://doi.org/10.3390/math9020161
Chicago/Turabian StyleCarić, Biljana, Tatjana Došenović, Reny George, Zoran D. Mitrović, and Stojan Radenović. 2021. "On Jungck–Branciari–Wardowski Type Fixed Point Results" Mathematics 9, no. 2: 161. https://doi.org/10.3390/math9020161
APA StyleCarić, B., Došenović, T., George, R., Mitrović, Z. D., & Radenović, S. (2021). On Jungck–Branciari–Wardowski Type Fixed Point Results. Mathematics, 9(2), 161. https://doi.org/10.3390/math9020161