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Abstract: In this paper, we generalize some results of Wardowski (Fixed Point Theory Appl. 2012:94,
2012), Cosentino and Vetro (Filomat 28:4, 2014), and Piri and Kumam (Fixed Point Theory Appl.
2014:210, 2014) theories by applying some weaker symmetrical conditions on the self map of a
complete metric space and on the mapping F, concerning the contractions defined by Wardowski.
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1. Introduction and Preliminaries

Throughout this article, we denote by N the set of all natural numbers, by R the set of all real
numbers, and by R+ the set of all positive real numbers.

The Banach contraction principle [1] is the starting point in fixed point theory. This theorem has a
lot of applications in many disciplines such as chemistry, physics, biology, computer science, and other
branches of mathematics. Many authors improved, generalized and extended this classical result
in nonlinear analysis. They defined new contractive mappings in the context of a complete metric
space or investigated the existing contractive mappings in various abstract spaces, see e.g., [2–13] and
references therein. In particular, in 1962, Edelstein [14] proved the following version of the Banach
contraction principle.

Theorem 1 ([14]). Let (X, d) be a compact metric space and let T : X → X be a self-mapping. Assume that
d (Tx, Ty) < d (x, y) holds for all x, y ∈ X with x 6= y. Then T has a unique fixed point in X.

Recently, in 2012, Wardowski [15] introduced a new type of contraction called F-contraction and
generalized the Banach contraction principle.

Definition 1 ([15]). Let (X, d) be a metric space. A mapping T : X → X is called an F-contraction if there
exist τ > 0 and F ∈ F such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y)) (1)

holds for any x, y ∈ X with d(Tx, Ty) > 0, where F is the set of all functions F : R+ → R satisfying the
following conditions:

(F1) F is strictly increasing: x < y⇒ F(x) < F(y);

(F2) For each sequence {αn}n∈N in R+, limn→∞ αn = 0 if and only if

limn→∞ F(αn) = −∞;
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(F3) There exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.

Remark 1. Obviously, if T satisfies Inequality (1) and F is an increasing function (not necessary strictly
increasing), then T is contractive, i.e.,

d(Tx, Ty) < d(x, y), ∀x, y ∈ X, x 6= y,

so T is continuous.

The following theorem is Wardowski’s result:

Theorem 2 ([15]). Let (X, d) be a complete metric space and let T : X → X an F-contraction. Then T has a
unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}n∈N converges to x∗.

Secelean [16] showed that the condition (F2) in Definition 1 can be replaced by an
equivalent condition,

(F2’) inf F = −∞

or, also, by

(F2”) there exists a sequence {αn}n∈N of positive real numbers such that

limn→∞ F(αn) = −∞.

He proved the following lemma:

Lemma 1 ([16]). Let F : R+ → R be an increasing mapping and {αn}n∈N be a sequence of positive real
numbers. Then the following assertions hold:

(i) if limn→∞ F(αn) = −∞, then limn→∞ αn = 0;

(ii) if inf F = −∞, and limn→∞ αn = 0, then limn→∞ F(αn) = −∞.

Remark 2. Wardowski showed that if we take FB : R+ → R, FB(α) = ln α, then FB ∈ F , and the
FB-contraction reduces to a Banach contraction. Therefore, the Banach contractions are a particular case
of F-contractions. Meanwhile there exist F-contractions which are not Banach contractions (see [15]).

Cosentino and Vetro [17] introduced the notion of F-contraction of Hardy–Rogers-type and
generalized the result of Wardowski.

Definition 2 ([17]). Let (X, d) be a metric space. A mapping T : X → X is called an F-contraction of
Hardy–Rogers-type if there exist τ > 0 and F ∈ F such that

τ + F(d(Tx, Ty)) ≤ F(α · d(x, y) + β · d(x, Tx) + γ · d(y, Ty) + δ · d(x, Ty) + L · d(y, Tx)) (2)

holds for any x, y ∈ X with d(Tx, Ty) > 0, where α, β, γ, δ, L are non-negative numbers, γ 6= 1 and
α + β + γ + 2δ = 1.

Theorem 3 ([17]). Let (X, d) be a complete metric space and let T be a self-mapping on X. Assume that T is
an F-contraction of Hardy–Rogers-type, where γ 6= 1. Then T has a fixed point. Moreover, if α + δ + L ≤ 1,
then the fixed point of T is unique.
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Very recently, Piri and Kumam [18] introduced the following condition instead of the condition
(F3) in Definition 1:

(F3’) F is continuous on (0, ∞).

They denoted by F the set of all functions satisfying the conditions (F1), (F2′) and (F3′) and
proved the following generalization of the Banach contraction principle:

Theorem 4 ([18]). Let T be a self-mapping of a complete metric space X into itself. Suppose F ∈ F and there
exists τ > 0 such that

∀x, y ∈ X, [d(Tx, Ty) > 0⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y))].

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}n∈N converges to x∗.

Remark 3. Piri and Kumam showed that (F3) and (F3′) are independent of each other, i.e., F \ F 6= ∅,
F \ F 6= ∅ and F ∩ F 6= ∅. More precisely, for F(α) = −1/αp, p ≥ 1, we have F ∈ F, F /∈ F , and for
F(α) = −1/(α + [α])t, t ∈ (0, c), c < 1, we have F ∈ F and F /∈ F. Also, for F(α) = ln α, we have
F ∈ F ∩ F.

The reader interested in fixed points results obtained employing the concept of F-contraction
is referred to [19–31]. In this paper, we proved that some of the conditions in Theorems 2–4
are superfluous.

2. Main Results

The following theorem is a partial generalization of Theorem 3 and a generalization of Theorem 2.

Theorem 5. Let T be a selfmapping of a complete metric space X into itself. Suppose there exists τ > 0 such
that for all x, y ∈ X, d(Tx, Ty) > 0⇒

τ + F(d(Tx, Ty))

≤ F(α · d(x, y) + β · d(x, Tx) + γ · d(y, Ty) + δ · d(x, Ty) + L · d(y, Tx)),

where F : R+ → R is an increasing mapping, α, β, γ, δ, L are non-negative numbers, δ < 1/2, γ < 1, α + β +

γ + 2δ = 1, 0 < α + δ + L ≤ 1. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence
{Tnx}n∈N converges to x∗.

Proof. Let x0 ∈ X be an arbitrary point and construct a sequence {xn}n∈N ∈ X by

x1 = Tx0, x2 = Tx1 = T2x0, . . . , xn = Txn−1 = Tnx0, ∀n ∈ N. (3)

If there exists n ∈ N ∪ 0 such that d(xn, Txn) = 0, then xn is a fixed point of T and the proof is
complete. Hence, we assume that

0 < d(xn, Txn) = d(Txn−1, Txn), ∀n ∈ N. (4)
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Now, let dn = d(xn, xn+1). By the hypothesis and the monotony of F, we have for all n ∈ N

τ + F(dn)

= τ + F(d(xn, xn+1)) = τ + F(d(Txn−1, Txn))

≤ F(αd(xn−1, xn) + βd(xn−1, Txn−1) + γd(xn, Txn) + δd(xn−1, Txn)

+Ld(xn, Txn−1))

= F(αd(xn−1, xn) + βd(xn−1, xn) + γd(xn, xn+1) + δd(xn−1, xn+1)

+Ld(xn, xn))

= F(αdn−1 + βdn−1 + γdn + δd(xn−1, xn+1))

≤ F(αdn−1 + βdn−1 + γdn + δ(dn−1 + dn))

= F((α + β + δ)dn−1 + (γ + δ)dn)).

It follows that

F(dn) ≤ F((α + β + δ)dn−1 + (γ + δ)dn))− τ < F((α + β + δ)dn−1 + (γ + δ)dn)), (5)

so from the monotony of F, we get

dn < (α + β + δ)dn−1 + (γ + δ)dn,

and hence
(1− γ− δ)dn < (α + β + δ)dn−1,

for all n ∈ N. Since γ 6= 1 and α + β + γ + 2δ = 1, we deduce that 1− γ− δ > 0 and so

dn <
α + β + δ

1− γ− δ
dn−1 = dn−1,

for all n ∈ N. Thus, we conclude that the sequence {dn}n∈N is strictly decreasing, so there exists
limn→∞ dn = d. Suppose that d > 0. Since F is an increasing mapping there exists limx→d+ F(x) =
F(d + 0), so taking the limit as n → ∞ in Inequality (5) we get F(d + 0) ≤ F(d + 0)− τ, which is a
contradiction. Therefore,

lim
n→∞

dn = 0. (6)

Now, we claim that {xn}n∈N is a Cauchy sequence. Arguing by contradiction, we assume
that there exist ε > 0 and sequences {p(n)}n∈N and {q(n)}n∈N of natural numbers such that
p(n) > q(n) > n,

d(xp(n), xq(n)) > ε, d(xp(n)−1, xq(n)) ≤ ε, ∀n ∈ N. (7)

Then, we have

ε < d(xp(n), xq(n)) ≤ d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n)) ≤ d(xp(n)−1, xp(n)) + ε.

It follows from Relation (6) and the above inequality that

lim
n→∞

d(xp(n), xq(n)) = ε. (8)
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Since d(xp(n), xq(n)) > ε > 0, by the hypothesis and the monotony of F, we have

τ + F(d(xp(n), xq(n)))

≤ F(αd(xp(n)−1, xq(n)−1) + βd(xp(n)−1, Txp(n)−1) + γd(xq(n)−1, Txq(n)−1)

+ δd(xp(n)−1, Txq(n)−1) + Ld(Txp(n)−1, xq(n)−1))

= F(αd(xp(n)−1, xq(n)−1) + βd(xp(n)−1, xp(n)) + γd(xq(n)−1, xq(n))

+ δd(xp(n)−1, xq(n)) + Ld(xp(n), xq(n)−1))

≤ F(α[d(xp(n), xq(n)) + dp(n)−1 + dq(n)−1] + βdp(n)−1 + γdq(n)−1

+ δ[d(xp(n), xq(n)) + dp(n)−1] + L[d(xp(n), xq(n)) + dq(n)−1])

= F((α + δ + L)d(xp(n), xq(n)) + (α + β + δ)dp(n)−1 + (α + γ + L)dq(n)−1)

≤ F(d(xp(n), xq(n)) + dp(n)−1 + (α + γ + L)dq(n)−1).

Taking the limit as n → ∞ in the above inequality, we get τ + F(ε + 0) ≤ F(ε + 0), which is a
contradiction. This shows that {xn}n∈N is a Cauchy sequence. Since (X, d) is a complete metric space,
we have that {xn}n∈N converges to some point x∗ in X.

If there exists a sequence {p(n)}n∈N of natural numbers such that xp(n)+1 = Txp(n) = Tx∗,
then limn→∞ xp(n)+1 = x∗, so Tx∗ = x∗. Otherwise, there exists N ∈ N such that xn+1 = Txn 6=
Tx∗, ∀n ≥ N. Assume that Tx∗ 6= x∗. By the hypothesis, we have

τ + F(d(Txn, Tx∗))

≤ F (αd(xn, x∗) + βd(xn, Txn) + γd(x∗, Tx∗) + δd(xn, Tx∗) + Ld(Txn, x∗)) ,

so

τ + F(d(Txn, Tx∗))

= F(αd(xn, x∗) + βd(xn, xn+1) + γd(x∗, Tx∗) + δd(xn, Tx∗) + Ld(xn+1, x∗)).

Since F is increasing, we deduce that

d(Txn, Tx∗)

< αd(xn, x∗) + βd(xn, xn+1) + γd(x∗, Tx∗) + δd(xn, Tx∗) + Ld(xn+1, x∗),

so letting n tend to ∞, we get

d(x∗, Tx∗) ≤ γd(x∗, Tx∗) + δd(x∗, Tx∗) < d(x∗, Tx∗).

This is a contradiction. Therefore, Tx∗ = x∗. Now, we will show that T has a unique fixed point.
Let x, y ∈ X be two distinct fixed points of T. Thus Tx = x 6= y = Ty. Hence, d(Tx, Ty) = d(x, y) > 0.
By the hypothesis, since 0 < α + δ + L ≤ 1, we have

τ + F(d(x, y))

= τ + F(d(Tx, Ty))

≤ F(αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + Ld(y, Tx))

= F(αd(x, y) + δd(x, y) + Ld(x, y))

≤ F((α + δ + L)d(x, y)

≤ F(d(x, y))

This is a contradiction. Therefore, T has a unique fixed point.
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As a first corollary of Theorem 5, taking α = 1 and β = γ = δ = L = 0, we obtain Theorem 2 of
Wardowski. Furthermore, for δ = L = 0, we obtain a Reich [12] type theorem.

Corollary 1. Let (X, d) be a complete metric space and let T be a self-mapping on X. Assume that there exist
F : R+ → R an increasing mapping and τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(α · d(x, y) + β · d(x, Tx) + γ · d(y, Ty)),

for all x, y ∈ X, Tx 6= Ty, where α + β + γ = 1, α > 0. Then T has a unique fixed point in X.

Corollary 2. Let (X, d) be a complete metric space and let T be a self-mapping on X. Assume that there exist
F : R+ → R an increasing mapping and τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y)),

for all x, y ∈ X, Tx 6= Ty. Then T has a unique fixed point in X.

Example 1. Let X = {An : n ∈ N} ∪ {B} and d : X × X → [0, ∞) such that d (An, An) = d (B, B) = 0
for every n, d

(
An, An+p

)
= d

(
An+p, An

)
= d (An, B) = d (B, An) =

1
n for all n, p ∈ N.

Obviously (X, d) is a complete metric space.
Let T : X → X such that TAn = An+1 and TB = B.
Let us suppose that there exist F : R+ → R satisfying the hypothesis of Theorem 2. Taking x = An+i,

y = An+i+1, we have for every n ≥ 1 and i ≥ 0

τ + F (d (TAn+i, TAn+i+1)) = τ + F
(

1
n + i + 1

)
≤ F

(
1

n + i

)
We get

p−1

∑
i=0

(
τ + F

(
1

n + i + 1

))
≤

p−1

∑
i=0

F
(

1
n + i

)
, p ∈ N,

by where

pτ + F
(

1
n + p

)
≤ F

(
1
n

)
,

hence

τ +
1
p

F
(

1
n + p

)
≤ 1

p
F
(

1
n

)
. (9)

Taking p integer such that p ≤ nk < p + 1, we get by (F3) lim
n→∞

nk

p = 1, so lim
n→∞

1
p F
(

1
n

)
= lim

n→∞
nk

p ·
1
nk F

(
1
n

)
= 0 and lim

n→∞
1
p F
(

1
n+p

)
= lim

n→∞
(n+p)k

nk · nk

p ·
1

(n+p)k F
(

1
n+p

)
= 0.

Therefore, taking the limit as n→ ∞ in Inequality (9) we obtain τ ≤ 0, a contradiction. Hence F cannot
satisfy the hypothesis of Theorem 2.

But F : R+ → R, F (x) = − 1
x is increasing and satisfies Corollary 2:

τ + F
(
d
(
TAn, TAn+p

))
= τ + F

(
1

n + 1

)
= τ − n− 1 ≤ −n

= F
(

1
n

)
= F

(
d
(

An, An+p
))

, for τ ≤ 1,

τ + F (d (TAn, TB)) = τ + F
(

1
n + 1

)
≤ F

(
1
n

)
= F (d (An, B)) , for τ ≤ 1.
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Now, we will prove a new version of Theorem 2, which shows that the monotony of F it is not a
necessary condition.

Theorem 6. Let T be a selfmapping of a complete metric space X into itself. Suppose there exists τ > 0
such that

∀x, y ∈ X, [d(Tx, Ty) > 0⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y))], (10)

where F : R+ → R is a mapping satisfying the conditions (F2) and (F3′′), where

(F3”) F is continuous on (0, α), with α a positive real number.

Then, T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}n∈N converges to x∗.

Proof. The proof is similar to the proof of Theorem 2.1 in the paper [18]. Choose x0 ∈ X and construct
a sequence {xn}n∈N ∈ X by

x1 = Tx0, x2 = Tx1 = T2x0, . . . , xn = Txn−1 = Tnx0, ∀n ∈ N. (11)

If there exists n ∈ N∪ {0} such that d(xn, Txn) = 0, then xn is a fixed point of T and the proof is
complete. Hence, we assume that

0 < d(xn, Txn) = d(Txn−1, Txn), ∀n ∈ N. (12)

By the hypothesis we have

τ + F(d(Txn−1, Txn)) ≤ F(d(xn−1, xn)), ∀n ∈ N, (13)

i.e.,

F(d(Txn−1, Txn)) ≤ F(d(xn−1, xn))− τ = F(d(Txn−2, Txn−1))− τ

≤ F(d(xn−2, xn−1))− 2τ = F(d(Txn−3, Txn−2))− 2τ

≤ F(d(xn−3, xn−2))− 3τ = F(d(Txn−4, Txn−3))− 3τ

≤ . . .

≤ F(d(x0, x1))− nτ.

This implies that

lim
n→∞

F(d(xn, xn+1)) = lim
n→∞

F(d(Txn−1, Txn)) = −∞.

By (F2) we obtain that
lim

n→∞
d(xn, xn+1) = 0. (14)

Now, we claim that {xn}n∈N is a Cauchy sequence. Arguing by contradiction, we assume that
there exists 0 < ε < α and sequences {p(n)}n∈N and {q(n)}n∈N of natural numbers such that

p(n) > q(n) > n, d(xp(n), xq(n)) ≥ ε, d(xp(n)−1, xq(n)) < ε, ∀n ∈ N. (15)

Like in the proof of Theorem 5, we obtain

lim
n→∞

d(xp(n), xq(n)) = lim
n→∞

d(xp(n)−1, xq(n)−1) = ε. (16)

By the hypothesis, we have

τ + F(d(Txp(n)−1, Txq(n)−1)) ≤ F(d(xp(n)−1, xq(n)−1)), ∀n ∈ N.
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This implies
τ + F(d(xp(n), xq(n))) ≤ F(d(xp(n)−1, xq(n)−1)), ∀n ∈ N.

By (F3′′), taking the limit as n→ ∞, we get τ + F(ε) ≤ F(ε), which is a contradiction. Therefore,
{xn}n∈N is a Cauchy sequence. By completeness of (X, d), it follows that {xn}n∈N converges to some
point x∗ ∈ X.

Now, we claim that x∗ is a fixed point of T. Arguing by contradiction, we assume that
Tx∗ 6= x∗. If there exists a sequence {pn}n∈N of natural numbers such that xp(n)+1 = Txp(n) = Tx∗,
then limn→∞ xp(n)+1 = x∗, so Tx∗ = x∗. This is a contradiction. Hence, there exists N ∈ N such that
xn+1 = Txn 6= Tx∗, ∀n ≥ N. Then, by hypothesis, we get

τ + F(d(xn+1, Tx∗)) ≤ F(d(xn, x∗)), ∀n ≥ N.

By (F3′′), taking the limit as n → ∞ in the above inequality, we have
limn→∞ F(d(xn+1, Tx∗)) = −∞. Hence, by (F2) we get limn→∞ d(xn+1, Tx∗) = 0, which implies
d(x∗, Tx∗) = 0. This is a contradiction. Therefore, x∗ is a fixed point of T. The uniqueness yields the
same results as in the proof of Theorem 5.

Example 2. Let X = {A, B, C, D, E} and d : X× X → [0, ∞) such that

d (M, M) = 0, for every M ∈ X, (17)

d (M, N) = d (N, M) for every M, N ∈ X, (18)

d (A, B) = d (A, C) = d (A, D) = d (B, C) = d (B, D) = 2, (19)

d (A, E) = d (B, E) = d (C, D) = 3, d (C, E) = d (D, E) =
3
2

. (20)

Obviously, d is a metric on X and (X, d) is a complete metric space.
Let T : X → X such that TA = C, TB = D, TC = TD = TE = E.
Every F : R+ → R satisfying Relation (10) cannot be increasing because F (d (TA, TB)) =

F (d (C, D)) = F (3), F (d (A, B)) = F (2), so F does not verify (F1).
Let F : R+ → R,

F (x) =


− 1

x , x ∈
(
0, 3

2
]

x− 13
6 , x ∈

( 3
2 , 5

2
]

−4x+11
3 , x ∈

( 5
2 , 5
]

x− 8, x ∈ (5, ∞)

It is easy to prove that F satisfy (F3′′) and (F2).
For x = A, y = C or x = A, y = D or x = B, y = C or x = B, y = D we have F (d (Tx, Ty)) =

F
( 3

2
)
= − 2

3 and F (d (x, y)) = F (2) = − 1
6 so we have τ − 2

3 ≤ −
1
6 or τ ≤ 1

2 .
For x = A, y = E or x = B, y = E we get F (d (Tx, Ty)) = F

( 3
2
)
= − 2

3 and F (d (x, y)) = F (3) =
− 1

3 so we have τ − 2
3 ≤ −

1
3 or τ ≤ 1

3 .
Hence we can choose τ = 1

6 . Therefore, F satisfies the hypothesis of Theorem 6, but does not verify
Theorem 2.

3. Conclusions

In this paper, we generalize some results of Wardowski (Fixed Point Theory Appl. 2012:94, 2012),
Cosentino and Vetro (Filomat 28:4, 2014), and Piri and Kumam (Fixed Point Theory Appl. 2014:210,
2014) theorems by applying some weaker conditions on the self map of a complete metric space and
on the mapping F, concerning the contractions defined by Wardowski. Furthermore, we presented
some examples to support our main results.
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