New Series Solution of the Caputo Fractional Ambartsumian Delay Differential Equationation by Mittag-Leffler Functions
Abstract
:1. Introduction
2. Some Preliminary Results from Fractional Calculus
- -
- -
3. Algorithm for Obtaining Series Solution of Caputo Fractional Ambartsumian Equationation by Combined LT-ADM
3.1. Statement of the Problem
3.2. General Slgorithm of Combined LT-ADM
3.3. Series Solution with One-Parameter Mittag-Leffler Functions
4. Convergence of the Series Solution
5. Limit Case as of the Series Solution
6. Numerical Simulations and Discussions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ambartsumian, V.A. On the Fluctuations of the Surface Brightness of Galaxies. In Plasma and the Universe; Fälthammar, C.G., Arrhenius, G., De, B.R., Herlofson, N., Mendis, D.A., Kopal, Z., Eds.; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar] [CrossRef]
- Kato, T.; McLeod, J.B. The functional-differential equation y′(x)=ay(λx)+by(x). Bull. Am. Math. Soc. 1971, 77, 891–935. [Google Scholar]
- Patade, J.; Bhalekar, S. On analytical solution of Ambartsumian equation. Natl. Acad. Sci. Lett. 2017, 40, 291–293. [Google Scholar] [CrossRef]
- Bakodah, H.O.; Ebaid, A. Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method. Mathematics 2018, 6, 331. [Google Scholar] [CrossRef] [Green Version]
- Alatawi, A.A.; Aljoufi, M.; Alharbi, F.M.; Ebaid, A. Investigation of the Surface Brightness Model in the Milky Way via Homotopy Perturbation Method. J. Appl. Math. Phys. 2020, 3, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Algehyne, E.A.; El-Zahar, E.R.; Alharbi, F.M.; Ebaid, A. Development of analytical solution for a generalized Ambartsumian equation. AIMS Math. 2019, 5, 249–258. [Google Scholar] [CrossRef]
- Khaled, S.M.; El-Zahar, E.R.; Ebaid, A. Solution of Ambartsumian delay differential equation with conformable derivative. Mathematics 2019, 7, 425. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Singh, J.; Baleanu, D.; Rathore, S. Analysis of a fractional model of the Ambartsumian equation. Eur. Phys. J. Plus 2018, 133, 133–259. [Google Scholar] [CrossRef]
- Ali, E.H.; Ebaid, A.; Rach, R. Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions. Comput. Math. Appl. 2012, 63, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publ.: Boston, MA, USA, 1994. [Google Scholar]
- Chun, C.; Ebaid, A.; Lee, M.; Aly, E.H. An approach for solving singular two point boundary value problems: Analytical and numerical treatmen. ANZIAM J. 2012, 53, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.-S.; Chaolu, T.; Rach, R.; Lu, L. The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations. Comput. Math. Appl. 2013, 66, 728–736. [Google Scholar] [CrossRef]
- Duan, J.S.; Rach, R. A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations. Appl. Math. Comput. 2011, 218, 4090–4118. [Google Scholar] [CrossRef]
- Ebaid, A. A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method. J. Comput. Appl. Math. 2011, 235, 1914–1924. [Google Scholar] [CrossRef] [Green Version]
- Ebaid, A.; Al-Enazi, A.; Albalawi, B.Z.; Aljoufi, M.D. Accurate Approximate Solution of Ambartsumian Delay Differential Equationation via Decomposition Method. Math. Comput. Appl. 2019, 24, 7. [Google Scholar]
- Rach, R. A bibliography of the theory and applications of the Adomian decomposition method, 1961–2011. Kybernetes 2012, 41, 1087–1148. [Google Scholar] [CrossRef]
- Jafari, H.; Daftardar-Gejji, V. Solving a system of nonlinear fractional differential equations using Adomian decomposition. J. Comput. Appl. Math. 2006, 196, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Junsheng, D.; Jianye, A.; Mingyu, X. Solutions of systems of fractional differential equations by Adomian decomposition method. Appl. Math. J. Chin. Univ. Ser. B 2007, 22, 7–12. [Google Scholar]
- Shah, R.; Khan, H.; Arif, M.; Kumam, P. Application of Laplace-Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations. Entropy 2019, 21, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wazwaz, A.M. The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations. Appl. Math. Comput. 2010, 216, 1304–1309. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Rach, R.; Duan, J.S. Adomian decomposition method for solving the Volterra integral form of the Lane-Emden equations with initial values and boundary conditions. Appl. Math. Comput. 2013, 219, 5004–5019. [Google Scholar] [CrossRef]
- Fatoorehchi, H.; Rach, R. A method for inverting the Laplace transforms of two classes of rational transfer functions in control engineering. Alexandria Eng. J. 2020. [Google Scholar] [CrossRef]
- Alharbi, W.; Petrovskii, S. Numerical Analysis for the Fractional Ambartsumian Equation via the Homotopy Herturbation Method. Mathematics 2020, 8, 2247. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equationations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Spiegel, M.R. Laplac Transforms; McGraw-Hill Inc.: New York, NY, USA, 1965. [Google Scholar]
- Patade, J. Series solution of system of fractional order Ambartsumian equations: Application in Astronomy. arXiv 2020, arXiv:2008.04904v1. [Google Scholar]
0 | 1.8600 | 5.6288 | 1.3656 |
2 | 5.1695 | 3.3530 | 6.1451 |
4 | 7.4734 | 3.4129 | 3.0542 |
6 | 3.1829 | 4.4299 | 1.4283 |
8 | 8.3965 | 2.5116 | 1.8487 |
10 | 1.7190 | 9.1315 | 1.2649 |
0 | 1.0991 | 1.0603 | 1.9651 |
2 | 1.8281 | 7.2858 | 1.4322 |
4 | 3.7821 | 6.7724 | 1.1852 |
6 | 2.0318 | 9.5479 | 1.0519 |
8 | 6.4565 | 2.8588 | 9.8532 |
10 | 1.5476 | 1.0314 | 9.3953 |
(Present) | [26] | ||
0 | 1 | 1 | 0 |
2 | 0.458295 | 0.458159 | 8.1554 |
4 | 0.284022 | 0.283919 | 4.8080 |
6 | 0.204525 | 0.175858 | 2.8667 |
8 | 0.159575 | −2.466450 | 0.2626 |
10 | 0.130763 | −86.072400 | 0.8620 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, W.; Hristova, S. New Series Solution of the Caputo Fractional Ambartsumian Delay Differential Equationation by Mittag-Leffler Functions. Mathematics 2021, 9, 157. https://doi.org/10.3390/math9020157
Alharbi W, Hristova S. New Series Solution of the Caputo Fractional Ambartsumian Delay Differential Equationation by Mittag-Leffler Functions. Mathematics. 2021; 9(2):157. https://doi.org/10.3390/math9020157
Chicago/Turabian StyleAlharbi, Weam, and Snezhana Hristova. 2021. "New Series Solution of the Caputo Fractional Ambartsumian Delay Differential Equationation by Mittag-Leffler Functions" Mathematics 9, no. 2: 157. https://doi.org/10.3390/math9020157