New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability
Abstract
:1. Introduction
2. Sobol Sensitivity Analysis
3. Probability-Oriented Sensitivity Analysis
3.1. Sensitivity Measure Subordinated to Contrast
3.2. Sensitivity Measure Based on Entropy
3.3. Sensitivity Measure Based on Other Functionals
3.4. Probability-Oriented Sensitivity Indices
4. Case Study with Two Input Variables
5. Case Study with Five Input Variables
5.1. Stochastic Model: Output and Input Random Variables
5.2. The Sensitivity Analysis Results
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Derennes, P.; Morio, J.; Simatos, F. Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures. Math. Comput. Simul. 2021, 182, 721–737. [Google Scholar] [CrossRef]
- Jebur, H.Q.; Al-Zaidee, S.R. Non-deterministic approach for reliability evaluation of steel portal frame. Civ. Eng. J. 2019, 5, 1684–1697. [Google Scholar] [CrossRef]
- Melchers, R.E. Structural Reliability Analysis and Prediction, 2nd ed.; John Wiley: Chichester, UK, 2002. [Google Scholar]
- Xiao, S.; Lu, Z. Structural reliability analysis using combined space partition technique and unscented transformation. J. Struct. Eng. 2016, 142, 04016089. [Google Scholar] [CrossRef]
- Cheng, K.; Lu, Z.; Xiao, S.; Lei, J. Estimation of small failure probability using generalized subset simulation. Mech. Syst. Signal Process. 2022, 163, 108114. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley & Sons: West Sussex, UK, 2008. [Google Scholar]
- Cheng, K.; Lu, Z.; Ling, C.; Zhou, S. Surrogate-assisted global sensitivity analysis: An overview. Struct. Multidiscipl. Optim. 2020, 61, 1187–1213. [Google Scholar] [CrossRef]
- Javidan, M.M.; Kang, H.; Isobe, D.; Kim, J. Computationally efficient framework for probabilistic collapse analysis of structures under extreme actions. Eng. Struct. 2018, 172, 440–452. [Google Scholar] [CrossRef]
- Wagner, P.-R.; Fahrni, R.; Klippel, M.; Frangi, A.; Sudret, B. Bayesian calibration and sensitivity analysis of heat transfer models for fire insulation panels. Eng. Struct. 2020, 205, 110063. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Novák, L.; Lehký, D.; Novák, D.; Cao, M. Neural network ensemble-based sensitivity analysis in structural engineering: Comparison of selected methods and the influence of statistical correlation. Comput. Struct. 2021, 242, 106376. [Google Scholar] [CrossRef]
- Li, L.Y.; Lu, Z.Z.; Feng, J.; Wang, B.T. Moment-independent importance measure of basic variable and its state dependent parameter solution. Struct. Saf. 2012, 38, 40–47. [Google Scholar] [CrossRef]
- Wei, P.; Lu, Z.; Hao, W.; Feng, J.; Wang, B. Efficient sampling methods for global reliability sensitivity analysis. Comput. Phys. Commun. 2012, 183, 1728–1743. [Google Scholar] [CrossRef]
- Fort, J.C.; Klein, T.; Rachdi, N. New sensitivity analysis subordinated to a contrast. Commun. Stat. Theory Methods 2016, 45, 4349–4364. [Google Scholar] [CrossRef] [Green Version]
- Sobol, I.M. Sensitivity estimates for non-linear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Wei, P.; Wang, Y.; Tang, C. Time-variant global reliability sensitivity analysis of structures with both input random variables and stochastic processes. Struct. Multidisc. Optim. 2017, 55, 1883–1898. [Google Scholar] [CrossRef]
- Zhao, J.; Zeng, S.; Guo, J.; Du, S. Global reliability sensitivity analysis based on maximum entropy and 2-layer polynomial chaos expansion. Entropy 2018, 20, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, G.; Defaux, G. Efficient evaluation of reliability-oriented sensitivity indices. J. Sci. Comput. 2019, 79, 1433–1455. [Google Scholar] [CrossRef] [Green Version]
- Kala, Z. Global sensitivity analysis of reliability of structural bridge system. Eng. Struct. 2019, 194, 36–45. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L. Global reliability sensitivity analysis based on state dependent parameter method and efficient sampling techniques. Aerosp. Sci. Technol. 2020, 99, 105740. [Google Scholar] [CrossRef]
- Idrissi, M.I.; Chabridon, V.; Iooss, B. Developments and applications of Shapley effect to reliability-oriented sensitivity analysis with correlated inputs. Environ Model Softw. 2021, 143, 105115. [Google Scholar] [CrossRef]
- Lei, J.; Lu, Z.; He, L. The single-loop Kriging model combined with Bayes’ formula for time-dependent failure probability based global sensitivity. Structures 2021, 32, 987–996. [Google Scholar] [CrossRef]
- Lei, J.; Lu, Z.; Wang, L. An efficient method by nesting adaptive Kriging into Importance Sampling for failure-probability-based global sensitivity analysis. Eng. Comput. 2021, 141, 1–16. [Google Scholar]
- Yun, W.; Lu, Z.; Jiang, X.; He, P. An efficient dimensionality-independent algorithm for failure probability-based global sensitivity analysis by dual-stage adaptive kriging model. Eng. Optim. 2021, 53, 1613–1631. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, H.; Chang, Q.; Ji, M.; Li, C. Reliability and global sensitivity analysis for an airplane slat mechanism considering wear degradation. Chin. J. Aeronaut. 2021, 34, 163–170. [Google Scholar] [CrossRef]
- Lacaze, S.; Brevault, L.; Missoum, S.; Balesdent, M. Probability of failure sensitivity with respect to decision variables. Struct. Multidisc. Optim. 2015, 52, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Madsen, H.O. Omission sensitivity factor. Struct. Saf. 1988, 5, 35–45. [Google Scholar] [CrossRef]
- Leblouba, M.; Tabsh, S.W.; Barakat, S. Reliability-based design of corrugated web steel girders in shear as per AASHTO LRFD. J. Constr. Steel Res. 2020, 169, 106013. [Google Scholar] [CrossRef]
- Xiao, S.; Lu, Z. Structural reliability sensitivity analysis based on classification of model output. Aerosp. Sci. Technol. 2017, 71, 52–61. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, S.; Lu, Z. An efficient method based on Bayes’ theorem to estimate the failure-probability-based sensitivity measure. Mech. Syst. Signal Process. 2019, 115, 607–620. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Liu, F.; Zhou, H. Global sensitivity analysis of failure probability of structures with uncertainties of random variable and their distribution parameters. Eng. Comput. 2021, 126, 1–19. [Google Scholar]
- Ling, C.; Lu, Z.; Cheng, K.; Sun, B. An efficient method for estimating global reliability sensitivity indices. Probabilistic Eng. Mech. 2019, 56, 35–49. [Google Scholar] [CrossRef]
- Hu, Z.; Mahadevan, S. Global sensitivity analysis-enhanced surrogate (GASA) modelling for reliability analysis. Struct. Multidiscipl. Optim. 2016, 53, 501–521. [Google Scholar] [CrossRef]
- Kala, Z. Sensitivity Analysis in Probabilistic Structural Design: A Comparison of Selected Techniques. Sustainability 2020, 12, 4788. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 1990:2002: Eurocode—Basis of Structural Design; European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- Joint Committee on Structural Safety (JCSS). Probabilistic Model Code. Available online: https://www.jcss-lc.org/ (accessed on 15 May 2020).
- Kala, Z. Quantile-oriented global sensitivity analysis of design resistance. J. Civ. Eng. Manag. 2019, 25, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Kala, Z. Quantile-based versus Sobol sensitivity analysis in limit state design. Structures 2020, 28, 2424–2430. [Google Scholar] [CrossRef]
- Kala, Z. From probabilistic to quantile-oriented sensitivity analysis: New indices of design quantiles. Symmetry 2020, 12, 1720. [Google Scholar] [CrossRef]
- Kala, Z. Global sensitivity analysis of quantiles: New importance measure based on superquantiles and subquantiles. Symmetry 2021, 13, 263. [Google Scholar] [CrossRef]
- Gauthier, T.D. Detecting trends Using Spearman’s rank correlation coefficient. Environ. Forensics 2001, 2, 359–362. [Google Scholar] [CrossRef]
- Lehký, D.; Pan, L.; Novák, D.; Cao, M.; Šomodíková, M.; Slowik, O. A comparison of sensitivity analyses for selected prestressed concrete structures. Struct. Concr. 2019, 20, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Borgonovo, E. A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 2007, 92, 771–784. [Google Scholar] [CrossRef]
- Gamboa, F.; Klein, T.; Lagnoux, A. Sensitivity analysis based on Cramér-von Mises distance. SIAM-ASA J. Uncertain 2018, 6, 522–548. [Google Scholar] [CrossRef] [Green Version]
- Krykacz-Hausmann, B. Epistemic sensitivity analysis based on the concept of entropy. In Proceedings of the 3rd Intternational Conference on Sensitivity Analysis of Model Output, Madrid, Spain, 18–20 June 2001; pp. 31–35. [Google Scholar]
- Liu, H.; Sudjianto, A.; Chen, W. Relative entropy based method for probabilistic sensitivity analysis in engineering design. J. Mech. Des. 2006, 128, 326–336. [Google Scholar] [CrossRef]
- Maume-Deschamps, V.; Niang, I. Estimation of quantile oriented sensitivity indices. Stat. Probab Lett. 2018, 134, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Kucherenko, S.; Song, S.; Wang, L. Quantile based global sensitivity measures. Reliab. Eng. Syst. Saf. 2019, 185, 35–48253. [Google Scholar] [CrossRef] [Green Version]
- Antucheviciene, J.; Kala, Z.; Marzouk, M.; Vaidogas, E.R. Solving civil engineering problems by means of fuzzy and stochastic MCDM methods: Current state and future research. Math. Probl. Eng. 2015, 2015, 362579. [Google Scholar] [CrossRef] [Green Version]
- Amiri, M.; Hashemi-Tabatabaei, M.; Ghahremanloo, M.; Keshavarz-Ghorabaee, M.; Zavadskas, E.K.; Kaklauskas, A. Evaluating life cycle of buildings using an integrated approach based on quantitative-qualitative and simplified best-worst methods (QQM-SBWM). Sustainability 2021, 13, 4487. [Google Scholar] [CrossRef]
- Lellep, J.; Puman, E. Plastic response of conical shells with stiffeners to blast loading. Acta Comment. Univ. Tartu. Math. 2020, 24, 5–18. [Google Scholar] [CrossRef]
- Strauss, A.; Moser, T.; Honeger, C.; Spyridis, P.; Frangopol, D.M. Likelihood of impact events in transport networks considering road conditions, traffic and routing elements properties. J. Civ. Eng. Manag. 2020, 26, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Borgonovo, E.; Plischke, E. Sensitivity analysis: A review of recent advances. Eur. J. Oper. Res. 2016, 248, 869–887. [Google Scholar] [CrossRef]
- Plischke, E.; Borgonovo, E. Copula theory and probabilistic sensitivity analysis: Is there a connection? Eur. J. Oper. Res. 2019, 277, 1046–1059. [Google Scholar] [CrossRef]
- Borgonovo, E.; Hazen, G.B.; Jose, V.R.R.; Plischke, E. Probabilistic sensitivity measures as information value. Eur. J. Oper. Res. 2021, 289, 595–610. [Google Scholar] [CrossRef]
- Cui, L.; Lü, Z.; Zhao, X. Moment-independent importance measure of basic random variable and its probability density evolution solution. Sci. China Technol. Sci. 2010, 53, 1138–1145. [Google Scholar] [CrossRef]
- Kala, Z. Sensitivity assessment of steel members under compression. Eng. Struct. 2009, 31, 1344–1348. [Google Scholar] [CrossRef]
- Kotełko, M.; Lis, P.; Macdonald, M. Load capacity probabilistic sensitivity analysis of thin-walled beams. Thin-Walled Struct. 2017, 115, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Sun, M.; Yan, E.; Yang, T. The effect of seismic coefficient on pseudo-static slope stability. Sustainability 2021, 13, 8647. [Google Scholar] [CrossRef]
- Gamannossi, A.; Amerini, A.; Mazzei, L.; Bacci, T.; Poggiali, M.; Andreini, A. Uncertainty quantification of film cooling performance of an industrial gas turbine vane. Entropy 2020, 22, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, Τ.H. Global sensitivity analysis of in-plane elastic buckling of steel arches. Eng. Technol. Appl. Sci. Res. 2020, 10, 6476–6480. [Google Scholar] [CrossRef]
- Peng, X.; Xu, X.; Li, J.; Jiang, S. A Sampling-based sensitivity analysis method considering the uncertainties of input variables and their distribution parameters. Mathematics 2021, 9, 1095. [Google Scholar] [CrossRef]
- Yin, J.; Gu, J.; Chen, Y.; Zhang, F. Global sensitivity analysis of riveting parameters based on a random sampling-high dimensional model representation. Int. J. Adv. Manuf. Technol. 2021, 113, 465–472. [Google Scholar] [CrossRef]
- Hoeffding, W. A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 1948, 19, 293–325. [Google Scholar] [CrossRef]
- Owen, A. Lattice sampling revisited: Monte Carlo variance of means over randomized orthogonal arrays. Ann. Stat. 1994, 22, 930–945. [Google Scholar] [CrossRef]
- Gatel, L.; Lauvernet, C.; Carluer, N.; Weill, S.; Paniconi, C. Sobol global sensitivity analysis of a coupled surface/subsurface water flow and reactive solute transfer model on a real hillslope. Water 2020, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Kala, Z. Global sensitivity analysis based on entropy: From differential entropy to alternative measures. Entropy 2021, 23, 778. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, G.; Kraus, O. Use of safety factors for the design of steel structures according to the Eurocodes. Eng. Fail. Anal. 2007, 14, 434–441. [Google Scholar] [CrossRef]
- Sedlacek, G.; Müller, C. The European standard family and its basis. J. Constr. Steel Res. 2006, 62, 522–548. [Google Scholar] [CrossRef]
- Kala, Z.; Valeš, J. Sensitivity assessment and lateral-torsional buckling design of I-beams using solid finite elements. J. Constr. Steel Res. 2017, 139, 110–122. [Google Scholar] [CrossRef]
- Jindra, D.; Kala, Z.; Kala, J. Validation of stainless-steel CHS columns finite element models. Materials 2021, 14, 1785. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Lu, Z.; Jiang, X.; Zhang, L. Borgonovo moment independent global sensitivity analysis by Gaussian radial basis function meta-model. Appl. Math. Model. 2018, 54, 378–392. [Google Scholar] [CrossRef]
- Song, S.; Wang, L. A Novel Global sensitivity measure based on probability weighted moments. Symmetry 2021, 13, 90. [Google Scholar] [CrossRef]
- Kala, Z. Estimating probability of fatigue failure of steel structures. Acta Comment. Univ. Tartu. Math. 2019, 23, 245–254. [Google Scholar] [CrossRef]
- Heckmann, K.; Alzbutas, R.; Wang, M.; Jevremovic, T.; Lydell, B.O.Y.; Sievers, J.; Duan, X. Comparison of sensitivity measures in probabilistic fracture mechanics. Int. J. Press. Vessel. Pip. 2021, 192, 104388. [Google Scholar] [CrossRef]
- Kmet, S.; Tomko, M.; Soltys, R.; Rovnak, M.; Demjan, I. Complex failure analysis of a cable-roofed stadium structure based on diagnostics and tests. Eng. Fail Anal. 2019, 103, 443–461. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Csiszár, I. Axiomatic characterizations of information measures. Entropy 2008, 10, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Amigó, J.M.; Balogh, S.G.; Hernández, S. A brief review of generalized entropies. Entropy 2018, 20, 813. [Google Scholar] [CrossRef] [Green Version]
- Auder, B.; Iooss, B. Global sensitivity analysis based on entropy. In Proceedings of the ESREL 2008 Conference, Valencia, Spain, 22–25 September 2008; pp. 2107–2115. [Google Scholar]
- McKey, M.D.; Beckman, R.J.; Conover, W.J. A comparison of the three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar]
- Iman, R.C.; Conover, W.J. Small sample sensitivity analysis techniques for computer models with an application to risk assessment. Commun. Stat. Theory Methods 1980, 9, 1749–1842. [Google Scholar] [CrossRef]
- Kala, Z. Limit states of structures and global sensitivity analysis based on Cramér-von Mises distance. Int. J. Mech. 2020, 14, 107–118. [Google Scholar]
- Melcher, J.; Kala, Z.; Holický, M.; Fajkus, M.; Rozlívka, L. Design characteristics of structural steels based on statistical analysis of metallurgical products. J. Constr. Steel Res. 2004, 60, 795–808. [Google Scholar] [CrossRef]
- Kala, Z.; Valeš, J. Imperfection sensitivity analysis of steel columns at ultimate limit state. Arch. Civ. Mech. Eng. 2018, 18, 1207–1218. [Google Scholar] [CrossRef]
- Kala, Z. Reliability analysis of the lateral torsional buckling resistance and the ultimate limit state of steel beams with random imperfections. J. Civ. Eng. Manag. 2015, 21, 902–911. [Google Scholar] [CrossRef]
- Jönsson, J.; Müller, M.S.; Gamst, C.; Valeš, J.; Kala, Z. Investigation of European flexural and lateral torsional buckling interaction. J. Constr. Steel Res. 2019, 156, 105–121. [Google Scholar] [CrossRef]
- Prokop, J.; Vičan, J.; Jošt, J. Numerical analysis of the beam-column resistance compared to methods by European standards. Appl. Sci. 2021, 11, 3269. [Google Scholar] [CrossRef]
- Pacheco, J.; Sá, M.F.; Correia, J.R.; Silvestre, N.; Sørensen, J.D. Structural safety of pultruded FRP profiles for global buckling. Part 2: Reliability-based evaluation of safety formats and partial factor calibration. Compos. Struct. 2021, 257, 113147. [Google Scholar] [CrossRef]
- Rykov, V.V.; Sukharev, M.G.; Itkin, V.Y. Investigations of the potential application of k-out-of-n systems in oil and gas industry objects. J. Mar. Sci. Eng. 2020, 8, 928. [Google Scholar] [CrossRef]
- Rykov, V.V.; Kozyrev, D.; Filimonov, A.; Ivanova, N. On reliability function of a k-out-of-n system with general repair time distribution. Probab. Eng. Inf. Sci. 2020, 51, 433–441. [Google Scholar]
- Aven, T.; Nøkland, T.E. On the use of uncertainty importance measures in reliability and risk analysis. Reliab. Eng. Syst. Saf. 2010, 95, 127–133. [Google Scholar] [CrossRef]
- Shittu, A.A.; Kolios, A.; Mehmanparast, A. A systematic review of structural reliability methods for deformation and fatigue analysis of offshore jacket structures. Metals 2021, 11, 50. [Google Scholar] [CrossRef]
Characteristic | Index | Symbol | Mean Value μ | Standard Deviation σ | |
---|---|---|---|---|---|
Permanent load | 1 | G | Gauss | 165.3 kN + 0.5μF | 16.5 kN |
Variable load | 2 | Q | Gumbel-max | 17.51 kN + 0.5μF | 6.2 kN |
Characteristic | Index | Symbol | Mean Value μ | Standard Deviation σ | |
---|---|---|---|---|---|
Yield strength | 3 | fy | Gauss | 297.3 MPa | 16.8 MPa |
Section thickness | 4 | t2 | Gauss | 12 mm | 0.55 mm |
Section width | 5 | b | Gauss | 80 mm | 0.79 mm |
Reliability Class | Pf |
---|---|
RC3 | 8.5 × 10−6 |
RC2 | 7.2 × 10−5 |
RC1 | 4.8 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kala, Z. New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability. Mathematics 2021, 9, 2425. https://doi.org/10.3390/math9192425
Kala Z. New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability. Mathematics. 2021; 9(19):2425. https://doi.org/10.3390/math9192425
Chicago/Turabian StyleKala, Zdeněk. 2021. "New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability" Mathematics 9, no. 19: 2425. https://doi.org/10.3390/math9192425
APA StyleKala, Z. (2021). New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability. Mathematics, 9(19), 2425. https://doi.org/10.3390/math9192425