Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems
Abstract
:1. Introduction
- A novel fractional-order Stuxnet virus model is proposed by exploiting the rich heritage of fractional calculus in an isolated and air-gapped network environment.
- Stability analysis of Stuxnet virus model for both local and global equilibrium points when disease-free, and endemic spread is performed.
- Correctness of the proposed Grunwald–Letnikov-based fractional numerical solver is ascertained, with close results to the state-of-the-art Runge–Kutta numerical solver for integer-order variants of the model.
- Numerical simulation with Grunwald–Letnikov-based fractional numerical solver for a distinct order of the fractional derivative terms in the system shows that fractional-order models offer rich characteristics by way of ultrafast transience and ultra-slow advancements of steady-state.
2. Fractional Calculus Fundamentals
2.1. Preliminaries
2.2. Grunwald–Letnikov-Based Numerical Solver for FDEs
3. Model Formulation of Fractional Order Stuxnet Virus
4. Model Analysis
4.1. Basic Reproduction Number ()
4.2. Equilibria Studies
4.3. Disease Free Equilibrium
4.4. Endemic Stability
5. Simulation and Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rohde, M.; Aal, K.; Misaki, K.; Randall, D.; Weibert, A.; Wulf, V. Out of syria: Mobile media in use at the time of civil war. Int. J. Hum.-Comput. Interact. 2016, 32, 515–531. [Google Scholar] [CrossRef]
- Bronk, C.; Tikk-Ringas, E. The cyber attack on saudi aramco. Survival 2013, 55, 81–96. [Google Scholar] [CrossRef]
- Farwell, J.P.; Rohozinski, R. Stuxnet and the future of cyber war. Survival 2011, 53, 23–40. [Google Scholar] [CrossRef]
- Albright, D.; Brannan, P.; Walrond, C. Stuxnet malware and natanz: Update of isis December 22, 2010 report. Inst. Sci. Int. Secur. 2011, 15, 739883. [Google Scholar]
- Mueller, P.; Yadegari, B. The Stuxnet Worm. Département des Sciences de Linformatique, Université de lArizona. Available online: https://www2.cs.arizona.edu/˜collberg/Teaching/466-566/2012/Resources/presentations/topic9-final/report.pdf (accessed on 12 December 2017).
- Falliere, N.; Murchu, L.O.; Chien, E. W32. Stuxnet Dossier; White Paper; Symantec Corp., Security Response: Cupertino, CA, USA, 2011; Volume 5, p. 29. [Google Scholar]
- Shahrear, P.; Chakraborty, A.K.; Islam, M.A.; Habiba, U. Analysis of computer virus propagation based on compartmental model. Appl. Comput. Math. 2018, 7, 12–21. [Google Scholar]
- Khanh, N.H. Dynamical analysis and approximate iterative solutions of an antidotal computer virus model. Int. J. Appl. Comput. Math. 2017, 3, 829–841. [Google Scholar] [CrossRef]
- Latha, V.P.; Rihan, F.A.; Rakkiyappan, R.; Velmurugan, G. A fractional order model for ebola virus infection with delayed immune response on heterogeneous complex networks. J. Comput. Appl. Math. 2018, 339, 134–146. [Google Scholar] [CrossRef]
- Zhu, B.; Joseph, A.; Sastry, S. A taxonomy of cyber attacks on scada systems. In Proceedings of the 2011 IEEE International Conferences on Internet of Things, and Cyber, Physical and Social Computing, Dalian, China, 19–22 October 2011; pp. 380–388. [Google Scholar]
- Wang, Z.; Bauch, C.T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Perc, M.; Perra, N.; Salathe, M.; Zhao, D. Statistical physics of vaccination. Phys. Rep. 2016, 664, 1–113. [Google Scholar] [CrossRef]
- Helbing, D.; Brockmann, D.; Chadefaux, T.; Donnay, K.; Blanke, U.; Woolley-Meza, O.; Moussaid, M.; Johansson, A.; Krause, J.; Schutte, S.; et al. Saving human lives: What complexity science and information systems can contribute. J. Stat. Phys. 2015, 158, 735–781. [Google Scholar] [CrossRef]
- Cohen, R.; Havlin, S.; Ben-Avraham, D. Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 2003, 91, 247901. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Fu, C.; Liu, X.-Y.; Yang, J.; Zhu, T.; Han, L. Evolutionary virus immune strategy for temporal networks based on community vitality. Future Gener. Comput. Syst. 2017, 74, 276–290. [Google Scholar] [CrossRef]
- Yang, X.-J. General Fractional Derivatives: Theory, Methods and Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019. [Google Scholar]
- Duarte Ortigueira, M.; Tenreiro Machado, J. Fractional derivatives: The perspective of system theory. Mathematics 2019, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Capasso, V.; Serio, G. A generalization of the kermack-mckendrick deterministic epidemic model. Math. Biosci. 1978, 42, 43–61. [Google Scholar] [CrossRef]
- Mishra, B.K.; Saini, D.K. Seirs epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput. 2007, 188, 1476–1482. [Google Scholar] [CrossRef]
- Kumar, S.; Ahmadian, A.; Kumar, R.; Kumar, D.; Singh, J.; Baleanu, D.; Salimi, M. An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics 2020, 8, 558. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Wang, A.; Liao, X. Impact of discontinuous antivirus strategy in a computer virus model with the point to group. Appl. Math. Model. 2016, 40, 3400–3409. [Google Scholar] [CrossRef]
- Piqueira, J.R.C.; Araujo, V.O. A modified epidemiological model for computer viruses. Appl. Math. Comput. 2009, 213, 355–360. [Google Scholar] [CrossRef]
- Masood, Z.; Majeed, K.; Samar, R.; Raja, M.A.Z. Design of epidemic computer virus model with effect of quarantine in the presence of immunity. Fundam. Inform. 2018, 161, 249–273. [Google Scholar] [CrossRef]
- Calvert, K.L.; Doar, M.B.; Zegura, E.W. Modeling internet topology. IEEE Commun. Mag. 1997, 35, 160–163. [Google Scholar] [CrossRef]
- Sabatier, J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007; Volume 4. [Google Scholar]
- Machado, J.T.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 639801. [Google Scholar]
- Tenreiro Machado, J.A.; Mata, M.E.; Lopes, A.M. Fractional dynamics and pseudo-phase space of country economic processes. Mathematics 2020, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Masood, Z.; Samar, R.; Raja, M.A.Z. Design of fractional order epidemic model for future generation tiny hardware implants. Future Gener. Comput. Syst. 2020, 106, 43–54. [Google Scholar] [CrossRef]
- Masood, Z.; Samar, R.; Raja, M.A.Z. Design of a mathematical model for the stuxnet virus in a network of critical control infrastructure. Comput. Secur. 2019, 87, 101565. [Google Scholar] [CrossRef]
- Du, M.; Wang, Z.; Hu, H. Measuring memory with the order of fractional derivative. Sci. Rep. 2013, 3, 3431. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with riemann-liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-J.; Feng, Y.-Y.; Cattani, C.; Inc, M. Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math. Methods Appl. Sci. 2019, 42, 4054–4060. [Google Scholar] [CrossRef]
- Yang, X.-J. New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2018, 19, 45. [Google Scholar]
- Cao, Y.; Zhang, Y.; Wen, T.; Li, P. Research on dynamic nonlinear input prediction of fault diagnosis based on fractional differential operator equation in high-speed train control system. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 013130. [Google Scholar] [CrossRef]
- Yang, X.-J.; Srivastava, H.M.; Torres, D.F.; Debbouche, A. General fractional-order anomalous diffusion with non-singular power-law kernel. Therm. Sci. 2017, 21, 1–9. [Google Scholar] [CrossRef]
- Yang, X.-J.; Machado, J.T. A new fractional operator of variable order: Application in the description of anomalous diffusion. Phys. A Stat. Mech. Its Appl. 2017, 481, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-J.; Abdel-Aty, M.; Cattani, C. A new general fractional order derivative with rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Therm. Sci. 2019, 23, 1677–1681. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Machado, J.T.; Galhano, A.M.; Trujillo, J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Machado, J.T. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Petráš, I. A note on the fractional-order chuas system. Chaos Solitons Fractals 2008, 38, 140–147. [Google Scholar] [CrossRef]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-leffler functions and their applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. The laplace transform method for linear differential equations of the fractional order. arXiv 1997, arXiv:funct-an/9710005. [Google Scholar]
- Cafagna, D. Fractional calculus: A mathematical tool from the past for present engineers [past and present]. IEEE Ind. Electron. Mag. 2007, 1, 35–40. [Google Scholar] [CrossRef]
- Petráš, I. Fractional derivatives, fractional integrals, and fractional differential equations in matlab. In Engineering Education and Research Using MATLAB; InTech: London, UK, 2011. [Google Scholar]
- Scherer, R.; Kalla, S.; Boyadjiev, L.; Al-Saqabi, B. Numerical treatment of fractional heat equations. Appl. Numer. Math. 2008, 58, 1212–1223. [Google Scholar] [CrossRef]
- Yang, L.-X.; Yang, X. The spread of computer viruses under the influence of removable storage devices. Appl. Math. Comput. 2012, 219, 3914–3922. [Google Scholar] [CrossRef]
- Langner, R. To Kill a Centrifuge: A Technical Analysis of What Stuxnet’s Creators Tried to Achieve; The Langner Group: Dover, DE, USA, 2013. [Google Scholar]
- Wueest, C. Targeted Attacks against the Energy Sector; Symantec Security Response: Mountain View, CA, USA, 2014. [Google Scholar]
- Markus, L. Ii. asymptotically autonomous differential systems. In Contributions to the Theory of Nonlinear Oscillations (AM-36); Princeton University Press: Princeton, NJ, USA, 2016; Volume 3, p. 17. [Google Scholar]
- Thieme, H.R. Asymptotically autonomous differential equations in the plane. Rocky Mt. J. Math. 1994, 24, 351–380. [Google Scholar] [CrossRef]
- den Driessche, P.V.; Watmough, J. Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Petras, I. Stability of fractional-order systems with rational orders. arXiv 2008, arXiv:0811.4102. [Google Scholar]
- Gil, J.J.; Avello, A.; Rubio, A.; Florez, J. Stability analysis of a 1 dof haptic interface using the routh-hurwitz criterion. IEEE Trans. Control. Syst. Technol. 2004, 12, 583–588. [Google Scholar] [CrossRef]
- Rohn, J. Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 1994, 15, 175–184. [Google Scholar] [CrossRef]
- Shakarian, P.; Shakarian, J.; Ruef, A. Introduction to Cyber-Warfare: A Multidisciplinary Approach; Newnes: Oxford, UK, 2013. [Google Scholar]
- Pinto, C.M.; Carvalho, A.R. A latency fractional order model for hiv dynamics. J. Comput. Appl. Math. 2017, 312, 240–256. [Google Scholar] [CrossRef]
- Chaharborj, S.S.; Chaharborj, S.; Mahmoudi, Y. Study of fractional order integro-differential equations by using chebyshev neural network. J. Math. Stat. 2017, 13, 1–13. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Mehmood, A.; Rehman, A.u.; Khan, A.; Zameer, A. Bioinspired computational heuristics for sisko fluid flow and heat transfer models. Appl. Soft Comput. 2018, 71, 622–648. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Shah, Z.; Manzar, M.A.; Ahmad, I.; Awais, M.; Baleanu, D. A new stochastic computing paradigm for nonlinear painlevé ii systems in applications of random matrix theory. Eur. Phys. J. Plus 2018, 133, 254. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmad, S.; Awais, M.; Ahmad, S.U.I.; Raja, M.A.Z. Neuroevolutionary computing paradigm for painlevé equation-ii in nonlinear optics. Eur. Phys. J. Plus 2018, 133, 184. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Manzar, M.A.; Samar, R. An efficient computational intelligence approach for solving fractional order riccati equations using ann and sqp. Appl. Math. Model. 2015, 39, 3075–3093. [Google Scholar] [CrossRef]
- Akbar, S.; Zaman, F.; Asif, M.; Rehman, A.U.; Raja, M.A.Z. Novel application of fo-dpso for 2-d parameter estimation of electromagnetic plane waves. Neural Comput. Appl. 2019, 31, 3681–3690. [Google Scholar] [CrossRef]
- Pires, E.S.; Machado, J.T.; Oliveira, P.d.; Cunha, J.B.; Mendes, L. Particle swarm optimization with fractional-order velocity. Nonlinear Dyn. 2010, 61, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, Y.; Akhtar, R.; Khan, R.; Ullah, F.; Raja, M.A.Z.; Machado, J.T. Design of fractional evolutionary processing for reactive power planning with FACTS devices. Sci. Rep. 2021, 11, 593. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.W.; Muhammad, Y.; Raja, M.A.Z.; Ullah, F.; Chaudhary, N.I.; He, Y. A New Fractional Particle Swarm Optimization with Entropy Diversity Based Velocity for Reactive Power Planning. Entropy 2020, 22, 1112. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, Y.; Khan, R.; Raja, M.A.Z.; Ullah, F.; Chaudhary, N.I.; He, Y. Design of fractional swarm intelligent computing with entropy evolution for optimal power flow problems. IEEE Access 2020, 8, 111401–111419. [Google Scholar] [CrossRef]
- Escalante-Martínez, J.E.; Gómez-Aguilar, J.F.; Calderón-Ramón, C.; Aguilar-Meléndez, A.; Padilla-Longoria, P. Synchronized bioluminescence behavior of a set of fireflies involving fractional operators of liouville–caputo type. Int. J. Biomath. 2018, 11, 1850041. [Google Scholar] [CrossRef]
Parameter | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | Case 9 |
---|---|---|---|---|---|---|---|---|---|
0.042 | 0.042 | 40 | 100 | 5600 | 5600 | 5600 | 412 | 5600 | |
0.042 | 0.042 | 45.7 | 60 | 412 | 412 | 412 | 5600 | 412 | |
0.6 | 0.4 | 0.385 | 0.4 | 0.4 | 0.4 | 0.745 | 0.4 | 0.4 | |
0.6 | 0.8 | 0.795 | 0.635 | 0.745 | 0.745 | 0.4 | 0.745 | 0.004 | |
0.00265 | 0.0051 | 0.001 | 0.009 | 0.021 | 0.8 | 0.021 | 0.021 | 0.021 | |
0.1126 | 0.19 | 0.0804 | 0.1598 | 0.1276 | 0.0804 | 0.1276 | 0.1276 | 0.1276 | |
0.0088 | 0.027 | 0.027 | 0.027 | 0.0131 | 0.0131 | 0.0131 | 0.0131 | 0.0131 |
Variables | S | I | M | ||
---|---|---|---|---|---|
Case 1 | 10,000 | 10 | 50,000 | 10,000 | |
Case 2 | 30,000 | 10 | 50,000 | 10,000 | |
Case 3 | 30,000 | 10 | 30,000 | 10,000 | |
Case 4–9 | 30,000 | 10 | 30,000 | 5000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masood, Z.; Raja, M.A.Z.; Chaudhary, N.I.; Cheema, K.M.; Milyani, A.H. Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems. Mathematics 2021, 9, 2160. https://doi.org/10.3390/math9172160
Masood Z, Raja MAZ, Chaudhary NI, Cheema KM, Milyani AH. Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems. Mathematics. 2021; 9(17):2160. https://doi.org/10.3390/math9172160
Chicago/Turabian StyleMasood, Zaheer, Muhammad Asif Zahoor Raja, Naveed Ishtiaq Chaudhary, Khalid Mehmood Cheema, and Ahmad H. Milyani. 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems" Mathematics 9, no. 17: 2160. https://doi.org/10.3390/math9172160
APA StyleMasood, Z., Raja, M. A. Z., Chaudhary, N. I., Cheema, K. M., & Milyani, A. H. (2021). Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems. Mathematics, 9(17), 2160. https://doi.org/10.3390/math9172160