On the Embed and Project Algorithm for the Graph Bandwidth Problem
Abstract
:1. Introduction
1.1. The Graph Bandwidth Problem
1.2. Our Contribution
- provide several interesting theoretical properties about the optimum solution of the SDP problem, especially in relation to the optimum ;
- demonstrate the performance of EPA with extensive numerical results for various test instances, which show that EPA in practice yields very good bandwidth approximations and could be a method of choice for this problem.
1.3. Assumptions and Notation
2. Related Work
2.1. Approximation Results about the Bandwidth
2.2. Closed form Expressions for for Some Families of Graphs
- (i)
- .
- (ii)
- .
- (iii)
- .
- (iv)
- .
- (v)
- .
- (vi)
- .
- (vii)
- if .
- (viii)
- .
3. Embed and Project Algorithm (EPA)
Algorithm 1: Embed and Project Algorithm (EPA) for solving (1). |
INPUT: graph , maximum number of projections .
OUTPUT: , . |
4. Some Theoretical Guaranties for and
4.1. Theoretical Guaranties for
4.2. Theoretical Guaranties for
5. Computational Results
5.1. Computational Issues with Solving
- Step 1.
- Here, we may take an arbitrary subset. Numerical experiments show that it makes sense to take only a few (default setting is 2) inequalities for each . We take those with .
- Step 2.
- Step 3.1.
- The new subset is carefully selected. All the inequalities from the previous two iterations that are still important (have nonzero dual variable) are kept. Additionally, for each , we add some of the most violated inequalities. We detect them by sorting the ith row of from the previous iteration in decreasing order and then take inequalities with the largest numbers of variables (only the first few of them). If at some iteration, violates an inequality that was already involved but deleted, we take this inequality back and keep it forever.
- Step 3.2.
- The same as Step 2.
Algorithm 2: Cutting-plane algorithm for solving the |
INPUT: graph .
|
5.2. Results
6. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blum, A.; Konjevod, G.; Ravi, R.; Vempala, S. Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems. Theor. Comput. Sci. 2000, 235, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Dunagan, J.; Vempala, S. On Euclidean embeddings and bandwidth minimization. In Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques; Springer: Berlin/Heidelberg, Germany, 2001; pp. 229–240. [Google Scholar]
- Chinn, P.Z.; Chvátalová, J.; Dewdney, A.K.; Gibbs, N.E. The bandwidth problem for graphs and matrices—A survey. J. Graph Theory 1982, 6, 223–254. [Google Scholar] [CrossRef]
- Harary, F. Sparse matrices in graph theory. In Large Sparse Sets of Linear Equations; Academic Press: Cambridge, MA, USA, 1970; pp. 139–150. [Google Scholar]
- Papadimitriou, C.H. The NP-completeness of the bandwidth minimization problem. Computing 1976, 16, 263–270. [Google Scholar] [CrossRef]
- Garey, M.R.; Graham, R.L.; Johnson, D.S.; Knuth, D.E. Complexity results for bandwidth minimization. SIAM J. Appl. Math. 1978, 34, 477–495. [Google Scholar] [CrossRef] [Green Version]
- Monien, B. The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Algebr. Discret. Methods 1986, 7, 505–512. [Google Scholar] [CrossRef]
- Karpinski, G.B.M.; Wirthgen, J. On Approximation Intractability of the Bandwidth Problem. Electron. Colloq. Comput. Complex. Rep. 1998, 14, 97–141. [Google Scholar]
- Feige, U. Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci. 2000, 60, 510–539. [Google Scholar] [CrossRef] [Green Version]
- Chung, F.R.; Seymour, P.D. Graphs with small bandwidth and cutwidth. Discret. Math. 1989, 75, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Rao, S. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In Proceedings of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, FL, USA, 13–16 June 1999; pp. 300–306. [Google Scholar]
- Povh, J. Towards the Optimum by Semidefinite and Copositive Programming: New Approach to Approximate Hard Optimization Problems; VDM Publishing: Saarbrucken, Germany, 2009. [Google Scholar]
- Tütüncü, R.H.; Toh, K.C.; Todd, M.J. Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 2003, 95, 189–217. [Google Scholar] [CrossRef]
- Terlaky, T. Interior Point Methods of Mathematical Programming; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 5. [Google Scholar]
- Anjos, M.F.; Ghaddar, B.; Hupp, L.; Liers, F.; Wiegele, A. Solving k-way graph partitioning problems to optimality: The impact of semidefinite relaxations and the bundle method. In Facets of Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2013; pp. 355–386. [Google Scholar]
- Fischer, I.; Gruber, G.; Rendl, F.; Sotirov, R. Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and equipartition. Math. Program. 2006, 105, 451–469. [Google Scholar] [CrossRef]
- Mafteiu-Scai, L.O. The bandwidths of a matrix. A survey of algorithms. Ann. West Univ. Timis.-Math. Comput. Sci. 2014, 52, 183–223. [Google Scholar] [CrossRef] [Green Version]
- Assmann, S.; Peck, G.; Sysło, M.; Zak, J. The bandwidth of caterpillars with hairs of length 1 and 2. SIAM J. Algebr. Discret. Methods 1981, 2, 387–393. [Google Scholar] [CrossRef]
- Kratsch, D. Finding the minimum bandwidth of an interval graph. Inf. Comput. 1987, 74, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Kloks, T.; Kratsch, D.; Müller, H. Bandwidth of chain graphs. Inf. Process. Lett. 1998, 68, 313–315. [Google Scholar] [CrossRef]
- Heggernes, P.; Kratsch, D.; Meister, D. Bandwidth of bipartite permutation graphs in polynomial time. J. Discret. Algorithms 2009, 7, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Feige, U.; Talwar, K. Approximating the bandwidth of caterpillars. In Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques; Springer: Berlin/Heidelberg, Germany, 2005; pp. 62–73. [Google Scholar]
- Kloks, T.; Kratsch, D.; Müller, H. Approximating the bandwidth for asteroidal triple-free graphs. J. Algorithms 1999, 32, 41–57. [Google Scholar] [CrossRef]
- Haralambides, J.; Makedon, F. Approximation algorithms for the bandwidth minimization problem for a large class of trees. Theory Comput. Syst. 1997, 30, 67–90. [Google Scholar] [CrossRef]
- Karpinski, M.; Wirtgen, J.; Zelikovsky, A. An approximation algorithm for the bandwidth problem on dense graphs. In Proceedings of the RALCOM’97, Santorini Island, Greece, 6–11 October 1997; pp. 1–14. [Google Scholar]
- Gupta, A. Improved bandwidth approximation for trees and chordal graphs. J. Algorithms 2001, 40, 24–36. [Google Scholar] [CrossRef]
- Fürer, M.; Gaspers, S.; Kasiviswanathan, S.P. An exponential time 2-approximation algorithm for bandwidth. In International Workshop on Parameterized and Exact Computation; Springer: Berlin/Heidelberg, Germany, 2009; pp. 173–184. [Google Scholar]
- Crisan, G.C.; Pintea, C.M. A hybrid technique for a matrix bandwidth problem. Sci. Stud. Res. 2011, 21, 113–120. [Google Scholar]
- Lim, A.; Lin, J.; Rodrigues, B.; Xiao, F. Ant colony optimization with hill climbing for the bandwidth minimization problem. Appl. Soft Comput. 2006, 6, 180–188. [Google Scholar] [CrossRef]
- Guan, J.; Lin, G.; Feng, H.B. Ant colony optimisation with local search for the bandwidth minimisation problem on graphs. Int. J. Intell. Inf. Database Syst. 2019, 12, 65–78. [Google Scholar]
- Hamon, R.; Borgnat, P.; Flandrin, P.; Robardet, C. Relabelling vertices according to the network structure by minimizing the cyclic bandwidth sum. J. Complex Netw. 2016, 4, 534–560. [Google Scholar] [CrossRef]
- Balogh, J.; Mubayi, D.; Pluhár, A. On the edge-bandwidth of graph products. Theor. Comput. Sci. 2006, 359, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Baioletti, M.; Milani, A.; Santucci, V. Variable neighborhood algebraic differential evolution: An application to the linear ordering problem with cumulative costs. Inf. Sci. 2020, 507, 37–52. [Google Scholar] [CrossRef]
- Ceberio, J.; Irurozki, E.; Mendiburu, A.; Lozano, J.A. A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem. IEEE Trans. Evol. Comput. 2013, 18, 286–300. [Google Scholar] [CrossRef]
- Ayodele, M.; McCall, J.; Regnier-Coudert, O. RK-EDA: A novel random key based estimation of distribution algorithm. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Scotland, UK, 17–21 September 2016; pp. 849–858. [Google Scholar]
- Santucci, V.; Baioletti, M.; Milani, A. Tackling permutation-based optimization problems with an algebraic particle swarm optimization algorithm. Fundam. Inform. 2019, 167, 133–158. [Google Scholar] [CrossRef]
- Marti, R.; Gortazar, F.; Duarte, A. Heuristics for the bandwidth colouring problem. Int. J. Metaheuristics 2010, 1, 11–29. [Google Scholar] [CrossRef]
- Ambainis, A.; Balodis, K.; Iraids, J.; Kokainis, M.; Prūsis, K.; Vihrovs, J. Quantum speedups for exponential-time dynamic programming algorithms. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, San Diego, CA, USA, 6–9 January 2019; pp. 1783–1793. [Google Scholar]
- Marinček, J.; Mohar, B. On approximating the maximum diameter ratio of graphs. Discret. Math. 2002, 244, 323–330. [Google Scholar] [CrossRef] [Green Version]
- De Klerk, E.; E.-Nagy, M.; Sotirov, R. On semidefinite programming bounds for graph bandwidth. Optim. Methods Softw. 2013, 28, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Povh, J.; Rendl, F. A copositive programming approach to graph partitioning. SIAM J. Optim. 2007, 18, 223–241. [Google Scholar] [CrossRef]
- Povh, J.; Rendl, F. Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 2009, 6, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Povh, J. Contribution of copositive formulations to the graph partitioning problem. Optimization 2013, 62, 71–83. [Google Scholar] [CrossRef]
- Rendl, F.; Sotirov, R.; Truden, C. Lower bounds for the bandwidth problem. Comput. Oper. Res. 2021, 135, 105422. [Google Scholar] [CrossRef]
- van Dam, E.R.; Sotirov, R. On bounding the bandwidth of graphs with symmetry. INFORMS J. Comput. 2015, 27, 75–88. [Google Scholar] [CrossRef]
- Jiang, T.; Miller, Z.; Yager, D. On the bandwidth of the Kneser graph. Discret. Appl. Math. 2017, 227, 84–94. [Google Scholar] [CrossRef]
- Caprara, A.; Salazar-González, J.J. Laying out sparse graphs with provably minimum bandwidth. INFORMS J. Comput. 2005, 17, 356–373. [Google Scholar] [CrossRef] [Green Version]
- Martí, R.; Campos, V.; Piñana, E. A branch and bound algorithm for the matrix bandwidth minimization. Eur. J. Oper. Res. 2008, 186, 513–528. [Google Scholar] [CrossRef] [Green Version]
- Diestel, R. Graph Theory; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Chung, F.R. Labelings of graphs. Sel. Top. Graph Theory 1988, 3, 151–168. [Google Scholar]
- Lai, Y.L.; Williams, K. A survey of solved problems and applications on bandwidth, edgesum, and profile of graphs. J. Graph Theory 1999, 31, 75–94. [Google Scholar] [CrossRef]
- Grötschel, M.; Lovász, L.; Schrijver, A. Geometric Algorithms and Combinatorial Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 2. [Google Scholar]
- De Klerk, E. Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 65. [Google Scholar]
- Sturm, J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 1999, 11, 625–653. [Google Scholar] [CrossRef]
- MOSEK ApS. The MOSEK Optimization Toolbox for MATLAB Manual, Version 9.0; MOSEK ApS: Copenhagen, Denmark, 2019. [Google Scholar]
- Hrga, T.; Povh, J. MADAM: A parallel exact solver for Max-Cut based on semidefinite programming and ADMM. arXiv 2020, arXiv:2010.07839. [Google Scholar]
n | Bound Lemma 6 | Bound Conj 1 | |||||
---|---|---|---|---|---|---|---|
10 | 1 | 1 | 1.0091 | 1.0956 | 1.0091 | 0.1047 | 0.1005 |
15 | 1 | 1 | 1.0122 | 1.0962 | 1.0122 | 0.0698 | 0.0671 |
20 | 1 | 1 | 1.0112 | 1.0964 | 1.0112 | 0.0524 | 0.0503 |
25 | 1 | 1 | 1.0126 | 1.0965 | 1.0126 | 0.0419 | 0.0403 |
30 | 1 | 1 | 1.0118 | 1.0965 | 1.0118 | 0.0349 | 0.0335 |
35 | 1 | 1 | 1.0126 | 1.0965 | 1.0126 | 0.0299 | 0.0288 |
40 | 1 | 1 | 1.0120 | 1.0966 | 1.0120 | 0.0262 | 0.0252 |
45 | 1 | 1 | 1.0127 | 1.0966 | 1.0127 | 0.0233 | 0.0224 |
50 | 1 | 1 | 1.0122 | 1.0966 | 1.0122 | 0.0209 | 0.0201 |
n | |||||
---|---|---|---|---|---|
25 | 24 | 24 | 54.1667 | 8.0000 | 8.0000 |
40 | 39 | 39 | 136.6667 | 12.0000 | 12.0000 |
55 | 54 | 54 | 256.6667 | 16.0000 | 16.0000 |
70 | 69 | 69 | 414.1667 | 20.0000 | 21.0000 |
85 | 84 | 84 | 609.1667 | 24.0000 | 25.0000 |
100 | 99 | 99 | 841.6667 | 28.0000 | 29.0000 |
Instance | n | OPT_GBP | OPT_EPA | OPT_SDP | ||
---|---|---|---|---|---|---|
100 | 2 | 2 | 1.6444 | 2 | 2 | |
150 | 2 | 2 | 1.6446 | 2 | 2 | |
200 | 2 | 2 | 1.6660 | 2 | 2 | |
250 | 2 | 2 | 1.6607 | 2 | 2 | |
300 | 2 | 3 | 1.7214 | 2 | 2 | |
100 | 5 | 5 | 22.9788 | 5 | 5 | |
125 | 5 | 5 | 23.7658 | 5 | 5 | |
150 | 10 | 11 | 62.3827 | 8 | 8 | |
200 | 10 | 11 | 73.8030 | 9 | 9 | |
49 | 13 | 14 | 37.6510 | 6 | 7 | |
64 | 15 | 16 | 49.9751 | 7 | 8 | |
81 | 17 | 18 | 63.9479 | 8 | 8 | |
100 | 19 | 20 | 79.5694 | 9 | 9 | |
225 | 29 | 30 | 182.3621 | 13 | 14 | |
400 | 39 | 41 | 326.2956 | 18 | 18 | |
31 | 4 | 5 | 7.6207 | 3 | 3 | |
341 | 43 | 55 | 970.5753 | 30 | 31 | |
364 | 37 | 55 | 692.6553 | 26 | 27 | |
63 | 7 | 8 | 19.4953 | 5 | 5 | |
127 | 11 | 14 | 51.7816 | 7 | 8 | |
255 | 19 | 30 | 178.4072 | 13 | 14 | |
50 | 39 | 43 | 208.2501 | 14 | 15 | |
100 | 79 | 79 | 833.2500 | 28 | 29 | |
150 | 124 | 143 | 1874.9168 | 42 | 44 | |
200 | 169 | 193 | 3333.2591 | 56 | 58 | |
32 | 13 | 13 | 34.1000 | 6 | 6 | |
64 | 23 | 23 | 113.7500 | 11 | 11 | |
128 | 43 | 43 | 390.0714 | 19 | 20 | |
256 | 78 | 83 | 1365.3128 | 36 | 37 | |
512 | 148 | 163 | 4854.5317 | 67 | 70 | |
1024 | 274 | 309 | 17,476.6041 | 127 | 132 |
Instance | n | OPT_GBP | OPT_EPA | OPT_SDP | ||
---|---|---|---|---|---|---|
54 | 13 | 14 | 74.5537 | 9 | 9 | |
155 | 31 | 33 | 635.3134 | 25 | 26 | |
188 | 27 | 33 | 423.7338 | 20 | 21 | |
160 | 15 | 17 | 160.9720 | 13 | 13 | |
143 | 18 | 23 | 164.1064 | 13 | 13 | |
140 | 4 | 5 | 12.7798 | 4 | 4 | |
150 | 6 | 9 | 34.0927 | 6 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Povh, J. On the Embed and Project Algorithm for the Graph Bandwidth Problem. Mathematics 2021, 9, 2030. https://doi.org/10.3390/math9172030
Povh J. On the Embed and Project Algorithm for the Graph Bandwidth Problem. Mathematics. 2021; 9(17):2030. https://doi.org/10.3390/math9172030
Chicago/Turabian StylePovh, Janez. 2021. "On the Embed and Project Algorithm for the Graph Bandwidth Problem" Mathematics 9, no. 17: 2030. https://doi.org/10.3390/math9172030
APA StylePovh, J. (2021). On the Embed and Project Algorithm for the Graph Bandwidth Problem. Mathematics, 9(17), 2030. https://doi.org/10.3390/math9172030