Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function
Abstract
:1. Significance Statement
2. Introduction
2.1. The Incomplete Gamma Function
2.2. The Hurwitz Zeta Function
3. Hurwitz Zeta Function in Terms of the Contour Integral
4. Incomplete Gamma Function in Terms of the Contour Integral
5. Main Results
Infinite Sum of the Incomplete Gamma Function in Terms of the Hurwitz Zeta Function
6. Representation in Terms of , Catalan’s and Glaisher’s constants
7. Representation in Terms of Euler’s Constant
8. Representation in Terms of the Log-Gamma Function
9. Representation in Terms of Catalan’s Constant
10. Representation in Terms of
11. Representation in Terms of the Riemann Zeta-Function
12. Representation in Terms of and
13. Summary of Expression
14. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Hurwitz, A. Einige Eigenschaften der Dirichletschen Functionen F(s) = ∑, die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten. Zeitschrift Math. Phys. 1882, 27, 86–101. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Digital Library of Mathematical Functions; With 1 CD-ROM (Windows, Macintosh and UNIX); MR 2723248 (2012a:33001); U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kanemitsu, S.; Kumagai, H.; Srivastava, H.M.; Yoshimoto, M. Some integral and asymptotic formulas associated with the Hurwitz Zeta function. Appl. Math. Comput. 2004, 154, 641–664. [Google Scholar] [CrossRef]
- Kanemitsu, S.; Tanigawa, Y.; Tsukada, H.; Yoshimoto, M. Contributions to the theory of the Hurwitz zeta-function. Hardy-Ramanujan J. Hardy-Ramanujan Soc. 2007, 30, 31–55. [Google Scholar]
- Bailey, D.H.; Borwein, J.M. Crandall’s computation of the incomplete Gamma function and the Hurwitz zeta function, with applications to Dirichlet L-series. Appl. Math. Comput. 2015, 268, 462–477. [Google Scholar] [CrossRef] [Green Version]
- Paris, R.B. The Stokes phenomenon associated with the Hurwitz zeta function ζ(s, a). Proc. R. Soc. A 2005, 461, 297–304. [Google Scholar] [CrossRef]
- Nemes, G. Error bounds for the asymptotic expansion of the Hurwitz zeta function. Proc. R. Soc. A 2017, 473, 20170363. [Google Scholar] [CrossRef] [PubMed]
- Prudnikov, A.P.; Brychkov, I.A.; Marichev, O.I. Integrals and Series: Special Functions; Gordon & Breach Science Publishers: New York, NY, USA, 1986; Volume 2. [Google Scholar]
- Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math. Forum 2020, 15, 235–244. [Google Scholar] [CrossRef]
- Rodríguez, R.E.; Kra, I.; Gilman, J.P. Integrals and Series, More Special Functions; USSR Academy of Sciences: Moscow, Russia, 1990; Volume 1. [Google Scholar]
- Rodríguez, R.E.; Kra, I.; Gilman, J.P. Complex Analysis In the Spirit of Lipman Bers; Springer: New York, NY, USA, 2007; pp. 1–220. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; 9th Printing; Dover: New York, NY, USA, 1982. [Google Scholar]
- Finch, S.R. Mathematical Constants; Cambridge University Press: Cambridge, UK, 2003; pp. 1–624. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course in Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1990; p. 264. [Google Scholar]
- Todd, J. Evaluation of the exponential integral for large complex arguments. J. Res. Natl. Bur. Stand. 1954, 52, 1–313. [Google Scholar] [CrossRef]
- Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kölbig, K.S. The Polygamma Function ψk(x) for x = 1/4 and x = 3/4. J. Comp. Appl. Math. 1996, 75, 43–46. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, R.; Stauffer, A. Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 2021, 9, 1952. https://doi.org/10.3390/math9161952
Reynolds R, Stauffer A. Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics. 2021; 9(16):1952. https://doi.org/10.3390/math9161952
Chicago/Turabian StyleReynolds, Robert, and Allan Stauffer. 2021. "Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function" Mathematics 9, no. 16: 1952. https://doi.org/10.3390/math9161952
APA StyleReynolds, R., & Stauffer, A. (2021). Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics, 9(16), 1952. https://doi.org/10.3390/math9161952