Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA
Abstract
:1. Introduction
1.1. General Context
1.2. Literature Review
1.3. Proposed Methodology and Main Contributions
- Development of a new hybrid (PPBIL–VSA) methodology to solve problems of binary and continuous variables.
- Improved results in terms of quality of the solution and processing times for the problem of integration of DGs into DC networks.
- Creation of a comparison scenario by selecting and implementing the most efficient techniques to solve the problem of integration of DGs into DC networks.
1.4. Paper’s Organization
2. Mathematical Formulation
2.1. Objective Function
2.2. Set of Constraints
3. Proposed Master–Slave Methodology
3.1. Reading the Data of the Electrical System
3.2. Initializing the Probability Matrix
3.3. Generating the Population
3.4. Evaluating the Objective Function (Slave Stage)
Algorithm 1 Pseudo-code of the VSA |
|
3.5. Selecting the Best Individual in the Population
3.6. Updating the Probability Matrix and the Learning Rate
3.7. Calculating the Entropy
3.8. Extracting the Solution of the Probability Matrix and the Sizing of the DGs
4. Test Systems
4.1. 21-Bus Test System
4.2. 69-Bus Test System
5. Comparison Methods, Parameters, and Technical Considerations
5.1. Comparison Methods
5.2. Parameterizing the Hybrid Methodologies
5.3. Technical Considerations
6. Simulation Results
6.1. 21-Bus Test System
6.2. 69-Bus Test System
7. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Grisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies 2018, 11, 1018. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.S.; Othman, E.A.; Bendary, F.M.; Ebrahim, M.A. Optimal integration of distributed generation resources in active distribution networks for techno-economic benefits. Energy Rep. 2020, 6, 3462–3471. [Google Scholar] [CrossRef]
- Mishra, R.K.; Swarup, K.S. Adaptive Weight-Based Self Reconfiguration of Smart Distribution Network With Intelligent Agents. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 464–472. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal selection and location of fixed-step capacitor banks in distribution networks using a discrete version of the vortex search algorithm. Energies 2020, 13, 4914. [Google Scholar] [CrossRef]
- Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L.; Gil-González, W.; Orozco-Henao, C. Genetic-Convex Model for Dynamic Reactive Power Compensation in Distribution Networks Using D-STATCOMs. Appl. Sci. 2021, 11, 3353. [Google Scholar] [CrossRef]
- Nunez Forestieri, J.; Farasat, M. Integrative sizing/real-time energy management of a hybrid supercapacitor/undersea energy storage system for grid integration of wave energy conversion systems. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3798–3810. [Google Scholar] [CrossRef]
- Hashimoto, J.; Ustun, T.S.; Suzuki, M.; Sugahara, S.; Hasegawa, M.; Otani, K. Advanced Grid Integration Test Platform for Increased Distributed Renewable Energy Penetration in Smart Grids. IEEE Access 2021, 9, 34040–34053. [Google Scholar] [CrossRef]
- Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N.A. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy 2017, 113, 266–280. [Google Scholar] [CrossRef]
- Ehsan, A.; Yang, Q. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Appl. Energy 2018, 210, 44–59. [Google Scholar] [CrossRef]
- Noreña, L.F.G.; Cuestas, B.J.R.; Ramirez, F.E.J. Ubicación y dimensionamiento de generación distribuida: Una revisión. Cienc. Ing. Neogranadina 2017, 27, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Bizuayehu, A.W.; de la Nieta, A.A.S.; Contreras, J.; Catalao, J.P. Impacts of stochastic wind power and storage participation on economic dispatch in distribution systems. IEEE Trans. Sustain. Energy 2016, 7, 1336–1345. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Ramos-Paja, C.A.; Gonzalez-Montoya, D.; Alcalá, G.; Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia. Sustainability 2020, 12, 1219. [Google Scholar] [CrossRef] [Green Version]
- Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC microgrids—Part II: A review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 2015, 31, 3528–3549. [Google Scholar] [CrossRef] [Green Version]
- Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F. On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach. Electr. Power Syst. Res. 2021, 194, 107072. [Google Scholar] [CrossRef]
- Rodriguez, P.; Rouzbehi, K. Multi-terminal DC grids: Challenges and prospects. J. Mod. Power Syst. Clean Energy 2017, 5, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Montoya, O.D.; Gil-González, W. A MIQP model for optimal location and sizing of dispatchable DGs in DC networks. Energy Syst. 2021, 12, 181–202. [Google Scholar] [CrossRef]
- Ji, H.; Wang, C.; Li, P.; Zhao, J.; Song, G.; Wu, J. Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming. Appl. Energy 2018, 218, 338–348. [Google Scholar] [CrossRef]
- Wong, L.A.; Ramachandaramurthy, V.K.; Taylor, P.; Ekanayake, J.; Walker, S.L.; Padmanaban, S. Review on the optimal placement, sizing and control of an energy storage system in the distribution network. J. Energy Storage 2019, 21, 489–504. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A.; Hernandez-Escobedo, Q.; Perea-Moreno, A.J. Optimal Location and Sizing of Distributed Generators in DC Networks Using a Hybrid Method Based on Parallel PBIL and PSO. Electronics 2020, 9, 1808. [Google Scholar] [CrossRef]
- Wang, P.; Wang, W.; Xu, D. Optimal sizing of distributed generations in dc microgrids with comprehensive consideration of system operation modes and operation targets. IEEE Access 2018, 6, 31129–31140. [Google Scholar] [CrossRef]
- Montoya, O.; Gil-González, W.; Grisales-Noreña, L. Optimal Power Dispatch of Dgs in Dc Power Grids: A Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the OPF Problem; World Scientific and Engineering Academy and Society: Athens, Greece, 2018. [Google Scholar]
- Garzon-Rivera, O.; Ocampo, J.; Grisales-Norena, L.; Montoya, O.; Rojas-Montano, J. Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Garzon-Rivera, O.D.; Montoya, O.D.; Ramos-Paja, C.A. Hybrid metaheuristic optimization methods for optimal location and sizing DGs in DC networks. In Workshop on Engineering Applications; Springer: Cham, Switzerland, 2019; pp. 214–225. [Google Scholar]
- Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L. Vortex search algorithm for optimal power flow analysis in DC resistive networks with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1439–1443. [Google Scholar] [CrossRef]
- Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power flow analysis in DC grids: Two alternative numerical methods. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1865–1869. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Montoya, O.D.; Gil-González, W.J.; Perea-Moreno, A.J.; Perea-Moreno, M.A. A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors. Electronics 2020, 9, 2062. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W. Triangular matrix formulation for power flow analysis in radial DC resistive grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1094–1098. [Google Scholar] [CrossRef]
- Molina-Martin, F.; Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C. A Mixed-Integer Conic Formulation for Optimal Placement and Dimensioning of DGs in DC Distribution Networks. Electronics 2021, 10, 176. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381. [Google Scholar] [CrossRef]
Method | PPBIL | VSA |
---|---|---|
Population size | 12 | 10 |
Parameters | Initial probability = 0.5 LR = Sigmoidal LRmin = 0.25 LRmax = 0.50 | a = 0.67 |
Stopping criterion | Entropy = 0.1 | = 200 |
Methodology | Bus/Power (kW) | Ploss (kW)/Reduction (%) | Aver. Ploss (kW)/Reduction (%) | Time (s) | STD (%) | Vworst (p.u)/Bus | Imax (A) |
---|---|---|---|---|---|---|---|
Without DGs | [0–150] | 27.6034 | - - - | - - - | - - - | [0.9–1.1] | 520 |
PPBIL–VSA | 12/72.97 16/110.09 19/49.57 | 5.9606/78.40 | 6.0191/78.19 | 3.57 | 1.21 | 0.97/9 | 257 |
GA–VSA | 12/72.46 16/114.04 19/46.13 | 5.9635/78.38 | 6.2472/77.36 | 5.90 | 4.02 | 0.97/9 | 257 |
GA–PSO | 3/31.61 8/55.46 17/145.56 | 8.6873/68.52 | 6.2936/77.19 | 42.20 | 4.25 | 0.96/12 | 259 |
GA–GA | 9/59.30 11/134.55 13/38.77 | 11.1495/59.60 | 6.2501/77.35 | 83.08 | 4.59 | 0.94/17 | 262 |
GA–BH | 12/25.62 14/78.41 18/64.83 | 9.7973/64.50 | 7.9495/71.20 | 18.83 | 6.78 | 0.96/17 | 324 |
PBIL–PSO | 12/73.79 16/118.34 20/40.50 | 5.9697/78.37 | 6.0209/78.18 | 126.52 | 1.42 | 0.97/9 | 257 |
PBIL–GA | 12/81.14 16/110.27 21/40.46 | 6.0040/78.24 | 6.0616/78.04 | 222.48 | 2.38 | 0.97/9 | 257 |
PBIL–BH | 12/86.84 16/91.90 19/50.46 | 6.1819/77.57 | 10.0972/63.42 | 203.03 | 13.67 | 0.97/17 | 260 |
PMC–PSO | 8/32.38 14/111.37 17/88.88 | 7.2063/73.89 | 9.1029/67.02 | 124.38 | 26.32 | 0.97/12 | 258 |
PMC–GA | 7/52.63 11/147.70 13/32.09 | 11.5531/58.14 | 9.9199/67.68 | 240.65 | 23.75 | 0.97/17 | 262 |
PMC–BH | 4/19.28 9/118.77 12/76.08 | 13.1477/52.36 | 11.8167/57.19 | 51.13 | 18.83 | 0.93/17 | 283 |
Methodology | Bus/Power (kW) | Ploss (kW)/Reduction (%) | Aver. Ploss (kW)/Reduction (% ) | Time (s) | STD (%) | Vworst (p.u)/Bus | Imax (A) |
---|---|---|---|---|---|---|---|
Without DGs | [0–1200] | 153.8476 | - - - | - - - | - - - | [0.9–1.1] | 335 |
PPBIL–VSA | 12/228.43 61/1094.59 62/294.20 | 13.8295/91.01 | 14.8624/90.33 | 11.95 | 6.92 | 0.98/64 | 181 |
GA–VSA | 22/177.56 61/1054.04 64/385.12 | 13.7932/91.03 | 15.8993/89.66 | 29.69 | 12.70 | 0.98/69 | 181 |
GA–PSO | 14/179.33 58/237.90 62/1200 | 17.4946/88.62 | 15.9443/89.63 | 240.64 | 15.74 | 0.98/69 | 181 |
GA–GA | 59/446.07 63/1170.76 | 19.0251/87.63 | 15.7352/89.77 | 468.67 | 10.74 | 0.97/27 | 181 |
GA–BH | 8/60.85 14/406.04 67/673.68 | 55.8518/63.69 | 34.8153/77.37 | 86.49 | 8.74 | 0.95/61 | 222 |
PBIL–PSO | 23/169.58 61/1200 67/247.65 | 13.8469/90.99 | 14.9848/90.26 | 111.53 | 5.25 | 0.98/64 | 181 |
PBIL–GA | 27/148.99 62/1167.96 65/294.86 | 14.8686/90.33 | 15.0260/90.23 | 220.82 | 5.37 | 0.98/21 | 182 |
PBIL–BH | 60/448.52 62/395.63 65/296.11 | 36.1161/76.52 | 33.3437/78.32 | 197.063 | 5.97 | 0.97/64 | 220 |
PMC–PSO | 10/417.23 63/1200 | 15.7545/89.75 | 76.2875/50.41 | 138.68 | 63.00 | 0.97/69 | 182 |
PMC–GA | 14/942.14 37/222.53 46/157.29 | 126.4519/17.80 | 139.4567/9.3539 | 140.30 | 64.75 | 0.93/69 | 214 |
PMC–BH | 2/189.23 10/1042.66 33/51.63 | 122.7144/20.63 | 129.0728/16.1034 | 61.25 | 36.48 | 0.93/69 | 231 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grisales-Noreña, L.F.; Montoya, O.D.; Hincapié-Isaza, R.A.; Granada Echeverri, M.; Perea-Moreno, A.-J. Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA. Mathematics 2021, 9, 1913. https://doi.org/10.3390/math9161913
Grisales-Noreña LF, Montoya OD, Hincapié-Isaza RA, Granada Echeverri M, Perea-Moreno A-J. Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA. Mathematics. 2021; 9(16):1913. https://doi.org/10.3390/math9161913
Chicago/Turabian StyleGrisales-Noreña, Luis Fernando, Oscar Danilo Montoya, Ricardo Alberto Hincapié-Isaza, Mauricio Granada Echeverri, and Alberto-Jesus Perea-Moreno. 2021. "Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA" Mathematics 9, no. 16: 1913. https://doi.org/10.3390/math9161913
APA StyleGrisales-Noreña, L. F., Montoya, O. D., Hincapié-Isaza, R. A., Granada Echeverri, M., & Perea-Moreno, A.-J. (2021). Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA. Mathematics, 9(16), 1913. https://doi.org/10.3390/math9161913