# Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. On the Localization Problem of Compact Invariant Sets

## 3. Preliminary Remarks

- (1)
- (2)
- This system possesses the invariant plane ${x}_{1}={x}_{3}={x}_{4}=0$; this is the case when there are no wild-type HIV particles and no $Th$ cells infected by them. The subsystem defined on this plane is explored in Section 7.
- (3)
- Suppose that ${a}_{5}$ is a source term for uninfected CD4${}^{+}$ T cells that is zero, the concentration of uninfected Th cells (${x}_{2}$) is zero as well, and between the death rate and growth rate of the uninfected CD4${}^{+}$ T cell population, the following inequalities are fulfilled: ${a}_{6}>{a}_{7}$ and ${u}_{3}<{a}_{6}{a}_{7}^{-1}-1$. Then the system (4) becomes a linear asymptotically stable system for which free, wild-type HIV particles and all other cell populations vanish after a sufficiently long observation time.

## 4. Equilibrium Points

**Example**

**1.**

## 5. Ultimate Upper Bounds

**Remark**

**1.**

**Theorem**

**1.**

**Remark**

**2.**

## 6. On the Location of $\mathbf{\omega}$-Limit Sets

**Theorem**

**2.**

**Proof.**

**Remark**

**3.**

- 1.
- Conditions of Theorem 2 do not depend on controls ${u}_{3}$ and ${u}_{4}$.
- 2.
- If the condition ${d}_{2}<1$ holds, then Theorem 2 is true. Indeed, taking into account (3), we get that this condition implies the condition ${d}_{1}<1$ and, consequently, conditions (9). Note that the condition ${d}_{2}<1$ does not depend on controls, that is, it is satisfied with zero values of controls.

**Theorem**

**3.**

**Proof.**

**Theorem**

**4.**

**Proof.**

## 7. Concluding Remarks

- Calculate equilibrium points;
- Present local stability conditions;
- Find ultimate upper bounds for all variables of this model that define the polytope containing all $\omega $-limit sets.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Perelson, A.S.; Kirschner, D.E.; De Boer, R. Dynamics of HIV infection of CD4
^{+}T cells. Math. Biosci.**1993**, 114, 81–125. [Google Scholar] [CrossRef] [Green Version] - Perelson, A.S.; Nelson, P.W. Mathematical Analysis of HIV-1 Dynamics in Vivo. SIAM Rev.
**1999**, 41, 3–44. [Google Scholar] [CrossRef] - Kirschner, D.; Lenhart, S.; Serbin, S. Optimal control of the chemotherapy of HIV. J. Math. Biol.
**1997**, 35, 775–792. [Google Scholar] [CrossRef] [PubMed] [Green Version] - De Leenheer, P.; Smith, H.L. Virus dynamics: A global analysis. SIAM J. Appl. Math.
**2003**, 63, 1313–1327. [Google Scholar] - Nowak, M.; May, R.M. Virus Dynamics: Mathematical Principles of Immunology and Virology; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Dehghan, M.; Nasri, M.; Razvan, M.R. Global stability of a deterministic model for HIV infection in vivo. Chaos Solitons Fractals
**2007**, 34, 1225–1238. [Google Scholar] [CrossRef] - Hadjiandreou, M.; Conejeros, R.; Vassiliadis, V.S. Towards a long-term model construction for the dynamic simulation of HIV infection. Math. Biosci. Eng.
**2007**, 4, 489–504. [Google Scholar] [PubMed] - Elaiw, A.M. Global properties of a class of HIV models. Nonlinear Anal. Real World Appl.
**2010**, 11, 2253–2263. [Google Scholar] [CrossRef] - Hernandez-Vargas, E.A.; Middleton, R.H. Modeling the three stages in HIV infection. J. Theor. Biol.
**2013**, 320, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Korobeinikov, A. Global properties of basic virus dynamics models. Bull. Math. Biol.
**2004**, 66, 879–883. [Google Scholar] [CrossRef] - Song, X.; Neumann, A.U. Global stability and periodic solution of the viral dynamics. J. Math. Anal. Appl.
**2007**, 329, 281–297. [Google Scholar] [CrossRef] [Green Version] - Li, M.Y.; Wang, L. Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral treatment. Nonlinear Anal. Real World Appl.
**2014**, 17, 147–160. [Google Scholar] [CrossRef] - Luo, J.; Wang, W.; Chen, H.; Fu, R. Bifurcations of a mathematical model for HIV dynamics. J. Math. Anal. Appl.
**2016**, 434, 837–857. [Google Scholar] [CrossRef] - Wang, X.; Liu, X.; Xie, W.C.; Xu, W.; Xu, Y. Global stability and persistence of HIV models with switching parameters and pulse control. Math. Comput. Simul.
**2016**, 123, 53–67. [Google Scholar] [CrossRef] - Stengel, R.F. Mutation and control of the human immunodeficiency virus. In Proceedings of the 13th Yale Workshop on Adaptive and Learning Systems, New Haven, CT, USA, 30 May–1 June 2005. [Google Scholar]
- Stengel, R.F. Mutation and control of the human immunodeficiency virus. Math. Biosci.
**2008**, 213, 93–102. [Google Scholar] [CrossRef] - Vergu, E.; Mallet, A.; Golmard, J. A modeling approach to the impact of HIV mutations on the immune system. Comput. Biol. Med.
**2005**, 35, 1–24. [Google Scholar] [CrossRef] - Alizon, S.; Magnus, C. Modelling the course of an HIV infection: Insights from ecology and evolution. Viruses
**2012**, 4, 1984–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pankavich, S. The effects of latent infection on the dynamics of HIV. Differ. Equ. Dyn. Syst.
**2016**, 24, 281–303. [Google Scholar] [CrossRef] [Green Version] - Pankavich, S.; Shutt, D. An in-host model of HIV incorporating latent infection and viral mutation. arXiv
**2015**, arXiv:1508.07616. [Google Scholar] - Hattaf, K.; Dutta, H. Modeling the dynamics of viral infections in presence of latently infected cells. Chaos Solitons Fractals
**2020**, 136, 109916. [Google Scholar] [CrossRef] [PubMed] - Hadjiandreou, M.M.; Conejeros, R.; Wilson, I. HIV treatment planning on a case-by-case basis. Int. J. Biol. Life Sci.
**2011**, 7, 148–157. [Google Scholar] - Douek, D.C.; Picker, L.J.; Koup, R.A. T cell dynamics in HIV-1 infection. Annu. Rev. Immunol.
**2003**, 21, 265–304. [Google Scholar] [CrossRef] [PubMed] - Krishchenko, A.P. Localization of invariant compact sets of dynamical systems. Differ. Equ.
**2005**, 41, 1669–1676. [Google Scholar] [CrossRef] - Krishchenko, A.P.; Starkov, K.E. Localization of compact invariant sets of the Lorenz system. Phys. Lett. A
**2006**, 353, 383–388. [Google Scholar] [CrossRef] - Starkov, K.E. Unbounded dynamics and compact invariant sets of one Hamiltonian system defined by the minimally coupled field. Phys. Lett. A
**2015**, 379, 1012–1016. [Google Scholar] [CrossRef] - Starkov, K.E.; Krishchenko, A.P. Ultimate dynamics of the Kirschner–Panetta model: Tumor eradication and related problems. Phys. Lett. A.
**2017**, 381, 3409–3416. [Google Scholar] [CrossRef] - Starkov, K.E. On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies. Phys. Lett. A
**2018**, 382, 387–393. [Google Scholar] [CrossRef] - Kanatnikov, A.N. Localization of invariant compact sets in differential inclusions. Differ. Equ.
**2015**, 51, 1425–1431. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Starkov, K.E.; Kanatnikov, A.N.
Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results. *Mathematics* **2021**, *9*, 1862.
https://doi.org/10.3390/math9161862

**AMA Style**

Starkov KE, Kanatnikov AN.
Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results. *Mathematics*. 2021; 9(16):1862.
https://doi.org/10.3390/math9161862

**Chicago/Turabian Style**

Starkov, Konstantin E., and Anatoly N. Kanatnikov.
2021. "Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results" *Mathematics* 9, no. 16: 1862.
https://doi.org/10.3390/math9161862