Adomian Decomposition Method with Orthogonal Polynomials: Laguerre Polynomials and the Second Kind of Chebyshev Polynomials
Abstract
1. Introduction
2. Modification of Adomian Decomposition Method
3. Test Problem
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Siddiqui, A.; Hameed, M.; Siddiqui, B.; Babcock, B. Adomian Decomposition Method Applied to Study Nonlinear Equations Arising in Non-Newtonian Flows; Oxford University Press: Hong Kong, China, 2012. [Google Scholar]
- Duan, J.; Chaolu, T.; Rach, R.; Lu, L. The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations. Comput. Math. Appl. 2013, 66, 728–736. [Google Scholar] [CrossRef]
- Wazwaz, A. The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations. Appl. Math. Comput. 2010, 216, 1304–1309. [Google Scholar] [CrossRef]
- Raslan, K. A comparison between the variational iteration method and Adomian decomposition method for the FitzHugh-Nagumo equations. J. Comput. Appl. Math. 2012, 207, 129–136. [Google Scholar] [CrossRef]
- Mahmood, S.; Shah, R.; Khan, H.; Arif, M. Laplace Adomian Decomposition Method for Multi Dimensional Time Fractional Model of Navier-Stokes Equation. Symmetry 2019, 11, 149. [Google Scholar] [CrossRef]
- Eltayeb, H.; Bachar, I. A note on singular two-dimensional fractional coupled Burgers’ equation and triple Laplace Adomian decomposition method. Bound. Value Probl. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publisher: Norwell, MA, USA, 1994. [Google Scholar]
- Hosseini, M. Adomian decomposition method with Chebyshev polynomials. Appl. Math. Comput. 2006, 175, 1685–1693. [Google Scholar] [CrossRef]
- Liu, Y. Adomian decomposition method with orthogonal polynomials: Legendre polynomials. Math. Comput. Model. 2009, 49, 1268–1273. [Google Scholar] [CrossRef]
- Attar, R. Special Functions and Orthogonal Polynomials; Lulu Press: Morrisville, NC, USA, 2006. [Google Scholar]
- Abdollahpour, M.R.; Aghayari, R.; Rassias, M.T. Hyers–Ulam stability of associated Laguerre differential equations in a subclass of analytic functions. J. Math. Anal. Appl. 2016, 437, 605–612. [Google Scholar] [CrossRef]
- Milovanovic, G.V.; Rassias, M.T. Analytic number theory, approximation theory, and special functions. In Topics in Special Functions; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wazwaz, A.; El-Sayed, S. A new modification of the Adomian decomposition method for linear and nonlinear operators. Appl. Math. Comput. 2001, 122, 393–405. [Google Scholar] [CrossRef]
- Abbaoui, K.; Cherruault, Y. New ideas for proving convergence of decomposition methods. Comput. Math. Appl. 1995, 29, 103–108. [Google Scholar] [CrossRef]
- Lesnic, D. Convergence of Adomian’s decomposition method: Periodic temperatures. Comput. Math. Appl. 2002, 44, 13–24. [Google Scholar] [CrossRef][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Li, L.; Wang, M. Adomian Decomposition Method with Orthogonal Polynomials: Laguerre Polynomials and the Second Kind of Chebyshev Polynomials. Mathematics 2021, 9, 1796. https://doi.org/10.3390/math9151796
Xie Y, Li L, Wang M. Adomian Decomposition Method with Orthogonal Polynomials: Laguerre Polynomials and the Second Kind of Chebyshev Polynomials. Mathematics. 2021; 9(15):1796. https://doi.org/10.3390/math9151796
Chicago/Turabian StyleXie, Yingying, Lingfei Li, and Mancang Wang. 2021. "Adomian Decomposition Method with Orthogonal Polynomials: Laguerre Polynomials and the Second Kind of Chebyshev Polynomials" Mathematics 9, no. 15: 1796. https://doi.org/10.3390/math9151796
APA StyleXie, Y., Li, L., & Wang, M. (2021). Adomian Decomposition Method with Orthogonal Polynomials: Laguerre Polynomials and the Second Kind of Chebyshev Polynomials. Mathematics, 9(15), 1796. https://doi.org/10.3390/math9151796