A Class of Three-Qubit Contextual Configurations Located in Fano Pentads
Abstract
:1. Introduction
2. Three-Qubit Observables, and Fano Pentads
3. A Notable Class of MP-Related Contextual Sets
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 1967, 17, 59. [Google Scholar] [CrossRef]
- Specker, E.P. Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica 1960, 14, 239. [Google Scholar] [CrossRef]
- Waegell, M.; Aravind, P.K. Proofs of the Kochen–Specker theorem based on a system of three qubits. J. Phys. A Math. Theor. 2012, 45, 405301. [Google Scholar] [CrossRef] [Green Version]
- Waegell, M.; Aravind, P.K. Proofs of the Kochen–Specker theorem based on the N-qubit Pauli group. Phys. Rev. A 2013, 88, 012102. [Google Scholar] [CrossRef] [Green Version]
- Saniga, M.; Planat, M. Multiple qubits as symplectic polar spaces of order two. Adv. Stud. Theor. Phys. 2007, 1, 1. [Google Scholar]
- Havlicek, H.; Odehnal, B.; Saniga, M. Factor-group-generated polar spaces and (multi-)qudits. Symmetry Integr. Geom. Methods Appl. 2009, 5, 096. [Google Scholar] [CrossRef] [Green Version]
- Thas, K. The geometry of generalized Pauli operators of N-qudit Hilbert space. EPL Europhys. Lett. 2009, 86, 60005. [Google Scholar] [CrossRef]
- Saniga, M.; Holweck, F.; Jaffali, H. Taxonomy of three-qubit Mermin pentagrams. Symmetry 2020, 12, 534. [Google Scholar] [CrossRef] [Green Version]
- Saniga, M.; Lévay, P. Mermin’s pentagram as an ovoid of PG(3,2). EPL Europhys. Lett. 2012, 97, 50006. [Google Scholar] [CrossRef]
- Planat, M.; Saniga, M.; Holweck, F. Distinguished three-qubit ‘magicity’ via automorphisms of the split Cayley hexagon. Quantum Inf. Process. 2013, 12, 2535. [Google Scholar] [CrossRef] [Green Version]

| T | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| 1 | 17 | 2 | 11 | 12 | 3 | 2 | 0 | 0 | 5 |
| 2 | 15 | 0 | 15 | 10 | 5 | 0 | 0 | 0 | 1 |
| 3 | 15 | 1 | 15 | 9 | 3 | 2 | 0 | 0 | 2 |
| 4 | 13 | 0 | 11 | 14 | 5 | 0 | 0 | 0 | 4 |
| 5 | 13 | 1 | 10 | 14 | 4 | 1 | 0 | 0 | 21 |
| 6 | 13 | 1 | 11 | 13 | 3 | 2 | 0 | 0 | 9 |
| 7 | 13 | 2 | 11 | 12 | 3 | 1 | 1 | 0 | 6 |
| 8 | 13 | 3 | 10 | 12 | 2 | 2 | 1 | 0 | 22 |
| 9 | 11 | 1 | 10 | 14 | 4 | 0 | 1 | 0 | 3 |
| 10 | 11 | 2 | 10 | 13 | 2 | 2 | 1 | 0 | 14 |
| 11 | 11 | 2 | 11 | 12 | 3 | 1 | 1 | 0 | 24 |
| 12 | 11 | 3 | 11 | 11 | 3 | 1 | 0 | 1 | 10 |
| 13 | 11 | 4 | 10 | 11 | 2 | 2 | 0 | 1 | 30 |
| 14 | 11 | 5 | 11 | 9 | 1 | 2 | 1 | 1 | |
| 15 | 9 | 1 | 11 | 13 | 3 | 0 | 2 | 0 | 11 |
| 16 | 9 | 2 | 10 | 13 | 2 | 1 | 2 | 0 | 31 |
| 17 | 9 | 2 | 11 | 12 | 3 | 0 | 2 | 0 | 7 |
| 18 | 9 | 2 | 11 | 12 | 1 | 2 | 2 | 0 | 17 |
| 19 | 9 | 3 | 10 | 12 | 2 | 1 | 2 | 0 | 23 |
| 20 | 9 | 3 | 11 | 11 | 3 | 0 | 1 | 1 | 12 |
| 21 | 9 | 4 | 10 | 11 | 2 | 1 | 1 | 1 | 15 |
| 22 | 9 | 4 | 10 | 11 | 2 | 1 | 1 | 1 | 32 |
| 23 | 9 | 4 | 11 | 10 | 1 | 2 | 1 | 1 | 18 |
| 24 | 9 | 4 | 11 | 10 | 1 | 2 | 1 | 1 | 36 |
| 25 | 9 | 5 | 10 | 10 | 2 | 1 | 0 | 2 | 16 |
| 26 | 9 | 1 | 15 | 9 | 3 | 0 | 2 | 0 | 8 |
| 27 | 9 | 5 | 11 | 9 | 3 | 0 | 0 | 2 | 13 |
| 28 | 9 | 5 | 11 | 9 | 1 | 2 | 0 | 2 | 20 |
| 29 | 9 | 5 | 11 | 9 | 1 | 2 | 1 | 1 | |
| 30 | 9 | 3 | 15 | 7 | 1 | 2 | 1 | 1 | 19 |
| 31 | 7 | 1 | 11 | 13 | 3 | 0 | 2 | 0 | 25 |
| 32 | 7 | 3 | 11 | 11 | 3 | 0 | 1 | 1 | 26 |
| 33 | 7 | 4 | 11 | 10 | 1 | 1 | 2 | 1 | |
| 34 | 7 | 5 | 10 | 10 | 2 | 1 | 0 | 2 | 34 |
| 35 | 7 | 5 | 11 | 9 | 3 | 0 | 0 | 2 | 27 |
| 36 | 7 | 6 | 10 | 9 | 0 | 2 | 1 | 2 | 41 |
| 37 | 5 | 4 | 10 | 11 | 2 | 0 | 2 | 1 | 33 |
| 38 | 5 | 4 | 11 | 10 | 1 | 1 | 2 | 1 | |
| 39 | 5 | 5 | 10 | 10 | 2 | 0 | 1 | 2 | 35 |
| 40 | 5 | 5 | 11 | 9 | 1 | 1 | 1 | 2 | 39 |
| 41 | 5 | 6 | 11 | 8 | 1 | 1 | 0 | 3 | 43 |
| 42 | 3 | 5 | 11 | 9 | 1 | 0 | 3 | 1 | 29 |
| 43 | 3 | 5 | 11 | 9 | 1 | 0 | 2 | 2 | 40 |
| 44 | 3 | 6 | 10 | 9 | 0 | 1 | 2 | 2 | 42 |
| 45 | 3 | 6 | 11 | 8 | 1 | 0 | 1 | 3 | 44 |
| 46 | 3 | 3 | 15 | 7 | 1 | 0 | 3 | 1 | 38 |
| 47 | 3 | 6 | 15 | 4 | 1 | 0 | 0 | 4 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saniga, M. A Class of Three-Qubit Contextual Configurations Located in Fano Pentads. Mathematics 2021, 9, 1524. https://doi.org/10.3390/math9131524
Saniga M. A Class of Three-Qubit Contextual Configurations Located in Fano Pentads. Mathematics. 2021; 9(13):1524. https://doi.org/10.3390/math9131524
Chicago/Turabian StyleSaniga, Metod. 2021. "A Class of Three-Qubit Contextual Configurations Located in Fano Pentads" Mathematics 9, no. 13: 1524. https://doi.org/10.3390/math9131524
APA StyleSaniga, M. (2021). A Class of Three-Qubit Contextual Configurations Located in Fano Pentads. Mathematics, 9(13), 1524. https://doi.org/10.3390/math9131524

