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Abstract: Given the symplectic polar space of type W(5, 2), let us call a set of five Fano planes sharing
pairwise a single point a Fano pentad. Once 63 points of W(5, 2) are appropriately labeled by 63 non-
trivial three-qubit observables, any such Fano pentad gives rise to a quantum contextual set known
as a Mermin pentagram. Here, it is shown that a Fano pentad also hosts another, closely related,
contextual set, which features 25 observables and 30 three-element contexts. Out of 25 observables,
ten are such that each of them is on six contexts, while each of the remaining 15 observables belongs
to two contexts only. Making use of the recent classification of Mermin pentagrams (Saniga et al.,
Symmetry 12 (2020) 534), it was found that 12,096 such contextual sets comprise 47 distinct types,
falling into eight families according to the number (3, 5, 7, . . . , 17) of negative contexts.
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1. Introduction

Let us call a set of pairwise commuting observables, whose product is +Id or −Id,
Id being the identity, a positive or negative context, respectively. A quantum contextual
configuration is a set of contexts such that (i) each observable occurs in an even number of
contexts and (ii) the number of negative contexts is odd. Any such configuration provides
a(n observable-based) proof of the famous Kochen–Specker theorem [1,2]. There exist a
number of proofs of this theorem based on the N-qubit Pauli group, N ≥ 2 (see, e.g., [3,4]).
Of them, particularly interesting are those where the structure of the underlying symplectic
polar space W(2N− 1, 2) (see, e.g., [5–7]) can be invoked to better understand their complex
nature. This idea was recently employed [8] to achieve a deeper insight into the structure
of the aggregate of 12,096 Mermin pentagrams of the three-qubit symplectic polar space
W(5, 2). In this note, we perform a similar analysis on a closely related class of three-qubit
contextual sets having the same number of elements.

2. Three-Qubit Observables, W(5, 2) and Fano Pentads

The three-qubit observables we will be dealing with belong to the set

S3 = {G1 ⊗ G2 ⊗ G3 : Gj ∈ {I, X, Y, Z}, j ∈ {1, 2, 3}}\{I ⊗ I ⊗ I},

where

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
.

The relevant symplectic polar space W(5, 2) can be viewed as the ordinary five-
dimensional projective space of order two, PG(5, 2), endowed with a non-degenerate
symplectic form T(x, y), with its lines and planes being identical to those lines and planes
of PG(5, 2) on which T(x, y) vanishes identically; W(5, 2) features 63 points, 315 lines and
135 planes, with three points on a line, three planes through a line and both 15 lines and
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15 planes through a point. The 63 elements of S3 can be put into a one-to-one correspon-
dence with the 63 points of the symplectic polar space W(5, 2) in such a way that two
commuting elements are collinear and a maximum set of mutually commuting elements
lie in a Fano plane (see, e.g., [5–7]). If we take a coordinate basis of W(5, 2) in which the
symplectic form T(x, y) is given by

T(x, y) = (x1y4 − x4y1) + (x2y5 − x5y2) + (x3y6 − x6y3),

then this correspondence has the form

Gj ↔ (xj, xj+3), j ∈ {1, 2, 3},

assuming that

I ↔ (0, 0), X ↔ (0, 1), Y ↔ (1, 1), Z ↔ (1, 0);

thus, for example, the point of W(5, 2) having coordinates (0, 1, 1, 1, 1, 0) corresponds to the
element X⊗Y⊗ Z. An important structural property of W(5, 2) is a set of five Fano planes
such that their pairwise intersections are all different and consist of a single point each,
the shared points forming in each Fano plane an affine plane of order two. We shall call
such a set of Fano planes a Fano pentad, and the affine planes consisting of shared points
will be referred to as distinguished ones.

3. A Notable Class of MP-Related Contextual Sets

Let us consider now the ‘three-qubit’ W(5, 2), that is, W(5, 2) having its points labeled
by three-qubit observables as described in the preceding section, and call its line/plane
positive or negative according to whether the product of observables located on it is
+I ⊗ I ⊗ I or −I ⊗ I ⊗ I, respectively. As first noticed in [9] and further elaborated in [8],
any Fano pentad in such space gives rise to a unique Mermin pentagram whose contexts
(edges) correspond to the five distinguished affine planes. This property is also illustrated
in Figure 1; the points of the pentagram and the Fano planes are labeled by three-qubit
observables in such a way that the distinguished affine planes are obtained by the removal
of those lines (and points located on them) that are represented by dotted circles. It is
interesting to see that, given a Fano pentad, we can also obtain a contextual configuration
if we remove from each Fano plane this distinguished line, but keep the points located on
it, and regard each of the remaining six lines as a context. Such a configuration consists
of 25 observables and 30 contexts, where each of those ten observables that are also on
the pentagram belongs to six contexts and each of the remaining 15 observables is shared
by two contexts only. Using the language of Waegell and Aravind [4], our configuration
carries the symbol 106152 − 303. From this construction it is obvious that not only is
there a unique 106152 − 303 configuration for each Mermin pentagram, but the two kinds
of configurations are so closely related to each other that we can readily classify our
106152 − 303 configurations making use of the strategy and results of Ref. [8]. In our
classification, each type will be characterized by the same string of parameters as used for
Mermin pentagrams [8], that is, the number of negative contexts, distribution of types of
observables and partitioning of types of valu(at)ed Fano planes, adding one more essential
characteristic—the type of the Mermin pentagram accommodated in the same Fano pentad.

To this end, let us recall [8] that a three-qubit observable from S3 is of type A, B or C
depending on whether it features two Is, one I or no I, respectively. Next, a Fano plane
of the three-qubit W(5, 2) can be positive or negative. As all Fano planes contain just
three observables of type B lying on the same line, they can only differ from each other
in the corresponding affine part. A negative Fano plane has all four affine observables
of type C and contains three concurrent negative lines. The affine part of a positive Fano
plane consists either of a single observable of type A and three observables of type C,
or vice versa. In the former case, one distinguishes between the cases where the plane
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contains negative lines (type a) or not (type b), the latter case being type c; if a positive Fano
plane contains negative lines, there are always four, no three of them being concurrent. Our
analysis of 106152 − 303 configurations was performed in the following steps: we picked
up a representative Mermin pentagram of a given type (see Table 1 of Ref. [8]), found the
corresponding Fano pentad, localized in this pentad our configuration and read off its
parameters. The principal results of our analysis are collected in Table 1. Figure 1 can also
serve as an example of this procedure for a Mermin pentagram of type 15. The associated
Fano pentad comprises two negative Fano planes (top-right and bottom ones) and three
positive ones; the middle-right plane is of type a, the top-left one is of type b and the
middle-left of type c. Removing from this pentad the five lines represented by dotted
circles yields the corresponding 106152 − 303 configuration.
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Figure 1. A Fano pentad and the corresponding Mermin pentagram. The Fano plane at the bottom
corresponds to the horizontal edge of the pentagram; the remaining correspondences follow readily
from the rotational symmetry of the figure. Following Ref. [8], the three different types of observables
are distinguished by different coloring and negative contexts are represented by thick lines; also,
G1 ⊗ G2 ⊗ G3 is short-handed to G1G2G3.

From the figure we read off that our configuration has nine negative contexts and
features four observables of type A, ten observables of type B and 11 of type C; hence, it
belongs to type 21.
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Table 1. A ‘group-geometric’ classification of 106152 − 303 configurations. Following the nomencla-
ture of Ref. [8], column one (T) shows the type; column two (C−) the number of negative contexts in a
configuration of the given type; columns three to five (OA to OC) indicate the number of observables
of individual types; column six (F−) the number of negative Fano planes; and columns seven to eight
(F+

a to F+
c ) the distribution of types of positive Fano planes in the Fano pentad. The last column (TP )

indicates the type of associated Mermin pentagrams.

T C− OA OB OC F− F+
a F+

b F+
c TP

1 17 2 11 12 3 2 0 0 5

2 15 0 15 10 5 0 0 0 1
3 15 1 15 9 3 2 0 0 2

4 13 0 11 14 5 0 0 0 4
5 13 1 10 14 4 1 0 0 21
6 13 1 11 13 3 2 0 0 9
7 13 2 11 12 3 1 1 0 6
8 13 3 10 12 2 2 1 0 22

9 11 1 10 14 4 0 1 0 3
10 11 2 10 13 2 2 1 0 14
11 11 2 11 12 3 1 1 0 24
12 11 3 11 11 3 1 0 1 10
13 11 4 10 11 2 2 0 1 30
14 11 5 11 9 1 2 1 1 28b

15 9 1 11 13 3 0 2 0 11
16 9 2 10 13 2 1 2 0 31
17 9 2 11 12 3 0 2 0 7
18 9 2 11 12 1 2 2 0 17
19 9 3 10 12 2 1 2 0 23
20 9 3 11 11 3 0 1 1 12
21 9 4 10 11 2 1 1 1 15
22 9 4 10 11 2 1 1 1 32
23 9 4 11 10 1 2 1 1 18
24 9 4 11 10 1 2 1 1 36
25 9 5 10 10 2 1 0 2 16
26 9 1 15 9 3 0 2 0 8
27 9 5 11 9 3 0 0 2 13
28 9 5 11 9 1 2 0 2 20
29 9 5 11 9 1 2 1 1 28a
30 9 3 15 7 1 2 1 1 19

31 7 1 11 13 3 0 2 0 25
32 7 3 11 11 3 0 1 1 26
33 7 4 11 10 1 1 2 1 37b
34 7 5 10 10 2 1 0 2 34
35 7 5 11 9 3 0 0 2 27
36 7 6 10 9 0 2 1 2 41

37 5 4 10 11 2 0 2 1 33
38 5 4 11 10 1 1 2 1 37a
39 5 5 10 10 2 0 1 2 35
40 5 5 11 9 1 1 1 2 39
41 5 6 11 8 1 1 0 3 43

42 3 5 11 9 1 0 3 1 29
43 3 5 11 9 1 0 2 2 40
44 3 6 10 9 0 1 2 2 42
45 3 6 11 8 1 0 1 3 44
46 3 3 15 7 1 0 3 1 38
47 3 6 15 4 1 0 0 4 45

Although there is a one-to-one correspondence between the set of Mermin pentagrams
and these 106152 − 303 configurations, the numbers of types are different; 45 versus 47,



Mathematics 2021, 9, 1524 5 of 6

respectively. The origin of this discrepancy is rather simple. There are two particular
types of Mermin pentagram, namely types 28 and 37 (see Table 1 of [8]), whose internal
structure is ‘felt’ by the corresponding configurations. A Mermin pentagram of type
28 has a single observable of type A and a single negative context, and the associated
106152 − 303 configuration is sensitive to whether the observable of type A does (28a)
or does not (28b) lie in the negative context. Similarly, a Mermin pentagram of type 37
also has only one negative context but two observables of type A, and the associated
106152 − 303 configuration discriminates whether this negative context does (37a) or does
not (37b) contain one of these two observables. On the other hand, we can also find a
couple of examples where the opposite holds, that is, where configurations ‘originating’
from pentagrams of different types have identical parameters; one example is furnished
by types 21 and 22, the other entails types 23 and 24. It is also worth mentioning some
other features of our taxonomy readily discernible from Table 1. If a configuration has just
a single observable of type A, then the positive Fano planes from its pentad are of only
one type. If a configuration features two observables of type A, then it does not exhibit a
positive Fano plane of type c. A configuration endowed with four observables of type A
has just a single positive Fano plane of type c. One further observes that a configuration
with an even (odd) number of observables of type B is characterized by an even (odd)
number of negative Fano planes. It is also an interesting feature that there is no 106152− 303
configuration with a single negative context, or one that has more than 17.

4. Conclusions

We have discovered a new remarkable class of 12,096 three-qubit quantum contextual
configurations of type 106152 − 303 that live, like well-known Mermin pentagrams, in Fano
pentads. Due to their close relation with Mermin pentagrams, their classification followed
rather straightforwardly from the taxonomy of pentagrams and, in addition, led to a
discovery of the finer structure of two particular types of pentagrams. As in the case of
Mermin pentagrams, also here a key element of our analysis was making use of the structure
of the associated symplectic polar space W(5, 2). Our final remark concerns the occurrence
of the number 12,096, which may serve as a revival of an older hypothesis [10] about
the possible role of the split Cayley hexagon of order two, a distinguished subgeometry
of W(5, 2) whose automorphism group has the same number of elements, in three-qubit
quantum contextuality issues.
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