Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames
Abstract
:1. Introduction
2. The Data Model and Problem Setting
- (H1)
- signals have a jointly sparse representation in , i.e., setting , , the coefficients matrix
3. Proposed Procedures
- given , estimate
- given , estimate
Algorithm 1 Calculate with the Soft Thresholding operator |
Input data:
Output: |
Possible Improvements
Algorithm 2 Calculate with the Hard Thresholding operator |
Input data:
Output: |
4. Implementation
5. Simulations and Real Examples
5.1. Synthetic Data
5.2. Real Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agrawal, S.; Agrawal, J. Survey on Anomaly Detection using Data Mining Techniques. Procedia Comput. Sci. 2015, 60, 708–713. [Google Scholar] [CrossRef] [Green Version]
- Fahim, M.; Sillitti, A. Anomaly Detection, Analysis and Prediction Techniques in IoT Environment: A Systematic Literature Review. IEEE Access 2019, 7, 81664–81681. [Google Scholar] [CrossRef]
- Basora, L.; Olive, X.; Dubot, T. Recent Advances in Anomaly Detection Methods Applied to Aviation. Aerospace 2019, 6, 117. [Google Scholar] [CrossRef] [Green Version]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41. [Google Scholar] [CrossRef]
- Pimentel, M.A.F.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249. [Google Scholar] [CrossRef]
- Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016, 60, 19–31. [Google Scholar] [CrossRef]
- Thudumu, S.; Branch, P.; Jin, J.; Singh, J.J. A comprehensive survey of anomaly detection techniques for high dimensional big data. J. Big Data 2020, 7, 42. [Google Scholar] [CrossRef]
- Rousseeuw, P.; Hubert, M. Anomaly detection by robust statistics. WIREs Data Mining Knowl. Discov. 2018, 8, e1236. [Google Scholar] [CrossRef] [Green Version]
- Hubert, M.; Rousseeuw, P.; Segaert, P. Multivariate functional outlier detection. Stat. Methods Appl. 2015, 24, 177–202. [Google Scholar] [CrossRef] [Green Version]
- De Canditiis, D.; De Feis, I. Simultaneous nonparametric regression in RADWT dictionaries. Comput. Stat. Data Anal. 2019, 134, 36–57. [Google Scholar] [CrossRef]
- Adler, A.; Elad, M.; Hel-Or, Y. Sparse Coding with Anomaly Detection. J. Signal Process. Syst. 2015, 79, 179–188. [Google Scholar] [CrossRef]
- Pilastre, B.; Boussouf, L.; D’Escriv, S.; Tourneretca, J.Y. Anomaly detection in mixed telemetry data using a sparse representation and dictionary learning. Signal Process. 2020, 168, 1–10. [Google Scholar] [CrossRef] [Green Version]
- She, Y.; Owen, A. Outlier Detection Using Nonconvex Penalized Regression. J. Am. Stat. Assoc. 2011, 106, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Loh, P.; Wainwright, M.J. Regularized M-estimators with Nonconvexity: Statistical and Algorithmic Theory for Local Optima. J. Mach. Learn. Res. 2015, 16, 559–616. [Google Scholar]
- Loh, P. Statistical consistency and asymptotic normality for high-dimensional robust M-estimators. Ann. Stat. 2017, 45, 866–896. [Google Scholar] [CrossRef] [Green Version]
- Amato, U.; Antoniadis, A.; De Feis, I.; Gijbels, I. Penalised robust estimators for sparse and high-dimensional linear models. Stat. Methods Appl. 2021, 30, 1–48. [Google Scholar] [CrossRef]
- Selesnick, I.W. Resonance-Based Signal Decomposition: A New Sparsity-Enabled Signal Analysis Method. Signal Process. 2011, 91, 2793–2809. [Google Scholar] [CrossRef]
- Bayram, I.; Selesnick, I.W. Frequency-Domain design of overcomplete rational-dilation wavelet transform. IEEE Trans. Signal Process. 2009, 57, 2957–2972. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, J. On the L1-Lq Regularized Regression; Technical Report; Department of Statistics, Carnegie Mellon University: Pittsburgh, PA, USA, 2008. [Google Scholar]
- Bach, F.R. Consistency of the Group Lasso and Multiple Kernel Learning. J. Mach. Learn. Res. 2008, 9, 1179–1225. [Google Scholar]
- Liu, H.; Zhang, J. Estimation Consistency of the Group Lasso and its Applications. In Artificial Intelligence and Statistics; van Dyk, D., Welling, M., Eds.; PMLR: Clearwater Beach, FL, USA, 2009; Volume 5, pp. 376–383. [Google Scholar]
- Yuan, M.; Lin, Y. Model selection and estimation in regression withgrouped variables. J. R. Statist. Soc. B 2006, 68, 49–67. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Huber, P. Robust Statistics; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Breheny, P.; Huang, J. Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors. Stat. Comput. 2015, 25, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Breheny, P.; Huang, J. Penalized methods for bi-level variable selection. Stat. Its Interface 2009, 2, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Breheny, P.; Ma, S. A selective review of group selection in high-dimensional models. Stat. Sci. 2012, 27, 481–499. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.; Tibshirani, R. Standardization and the group lasso penalty. Stat. Sin. 2012, 22, 983–1001. [Google Scholar] [CrossRef] [Green Version]
- Ypma, A. Learning Methods for Machine Vibration Analysis and Health Monitoring. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2001. [Google Scholar]
- Tax, D.M.J.; Ypma, A.; Duin, R.P. Pump Failure Detection Using Support Vector Data Descriptions. In International Symposium on Intelligent Data Analysis; Advances in Intelligent Data Analysis, IDA 1999, Lecture Notes in Computer Science Volume 1642; Hand, D.J., Kok, J.N., Berthold, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
HiSine | |||
---|---|---|---|
0.05 | 0.05 | 0 | |
0 | 0 | 0 | |
0 | 0 | 0 | |
1 | 1 | 1 |
HiSine | |||
---|---|---|---|
0 | 0 | 0 | |
0 | 0 | 0 | |
0 | 0 | 0 | |
0.1 | 0 | 0 |
TwoChirp | |||
---|---|---|---|
0 | 0 | 0 | |
0 | 0 | 0 | |
0 | 0 | 0 | |
1 | 1 | 0.8 |
TwoChirp | |||
---|---|---|---|
0 | 0 | 0 | |
0 | 0 | 0 | |
0 | 0 | 0 | |
0 | 0 | 0 |
Pump Data | |
---|---|
0 | |
0.0037 | |
0.0036 | |
0 | |
0.0205 | |
0.0225 | |
0.0207 | |
0.0202 | |
0.0192 | |
0.0190 | |
0.0203 | |
0.0201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Canditiis, D.; De Feis, I. Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames. Mathematics 2021, 9, 1288. https://doi.org/10.3390/math9111288
De Canditiis D, De Feis I. Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames. Mathematics. 2021; 9(11):1288. https://doi.org/10.3390/math9111288
Chicago/Turabian StyleDe Canditiis, Daniela, and Italia De Feis. 2021. "Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames" Mathematics 9, no. 11: 1288. https://doi.org/10.3390/math9111288
APA StyleDe Canditiis, D., & De Feis, I. (2021). Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames. Mathematics, 9(11), 1288. https://doi.org/10.3390/math9111288