Multiple Capture in a Group Pursuit Problem with Fractional Derivatives and Phase Restrictions
Abstract
:1. Introduction
2. Formulation of the Problem
3. Sufficient Conditions for Capture with
4. Sufficient Conditions for Capture with
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isaacs, R. Differential Games; John Wiley and Sons: New York, NY, USA, 1965. [Google Scholar]
- Pontryagin, L.S. Selected Scientific Works; Nauka: Moscow, Russia, 1988. [Google Scholar]
- Blaquiere, A.; Gerard, F.; Leitmann, G. Quantitative and Qualitative Differential Games; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Krasovskii, N.N. Game Problems of Contact of Motions; Nauka: Moscow, Russia, 1970. [Google Scholar]
- Friedman, A. Differential Games; John Wiley and Sons: New York, NY, USA, 1971. [Google Scholar]
- Krasovskii, N.N.; Subbotin, A.I. Positional Differential Games; Nauka: Moscow, Russia, 1974. [Google Scholar]
- Hajek, O. Pursuit Games; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Leitmann, G. Cooperative and Noncooperative Many-Player Differential Games; Springer: Vienna, Austria, 1974. [Google Scholar]
- Petrosyan, L.A. Differential Games of Pursuit; Leningrad University Press: Leningrad, Russia, 1977. [Google Scholar]
- Subbotin, A.I.; Chentsov, A.G. Optimization of a Guarantee in Problems of Control; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Chikrii, A.A. Conflict Controlled Prosesses; Kluwer Acad. Publ.: Boston, MA, USA; London, UK; Dordrecht, The Netherlands, 1997. [Google Scholar]
- Grigorenko, N.L. Mathematical Methods of Control a Few Dynamic Processes; Moscow State University: Moscow, Russia, 1990. [Google Scholar]
- Blagodatskikh, A.I.; Petrov, N.N. Conflict Interaction of Groups of Controlled Objects; Udmurt State University: Izhevsk, Russia, 2009. [Google Scholar]
- Satimov, N.Y.; Rikhsiev, B.B. Methods of Solving the Problem of Avoiding Encounter in Mathematical Control Theory; Fan: Tashkent, Uzbekistan, 2000. [Google Scholar]
- Eidel’man, S.D.; Chikrii, A.A. Dynamic game problems of approach for fractional-order equations. Ukr. Math. J. 2000, 52, 1787–1806. [Google Scholar] [CrossRef]
- Chikrii, A.A.; Matichin, I.I. Game problems for fractional-order linear systems. Proc. Steklov Inst. Math. 2010, 268, 54–70. [Google Scholar] [CrossRef]
- Chikrii, A.A.; Matichin, I.I. On linear conflict-controlledprocesses with fractional derivatives. Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk. 2011, 17, 256–270. [Google Scholar]
- Chikrii, A.A.; Matychyn, I.I. Game problems for fractional-order systems. In New Trends Innanotechnology and Fractional Calculus Applications; Springer: New York, NY, USA, 2010; pp. 233–241. [Google Scholar]
- Gomoynov, M.I. Solution to a Zero-Sum Differential Game with Fractional Dynamics via Approximations. Dyn. Games Appl. 2020, 10, 417–443. [Google Scholar] [CrossRef] [Green Version]
- Petrov, N.N. One problem of group pursuit with fractional derivatives and phase constraints. Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki. 2017, 27, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Petrov, N.N. A multiple capture in a group pursuit problem with fractional derivatives. Proc. Steklov Inst. Math. 2019, 305, 150–157. [Google Scholar] [CrossRef]
- Petrov, N.N. Group Pursuit Problem in a Differential Game with Fractional Derivatives, State Constraints, and Simple Matrix. Differ. Equ. 2019, 55, 841–848. [Google Scholar] [CrossRef]
- Caputo, M. Linear model of dissipation whose q is almost frequency independent-II. Geophys. R. Astr. Soc. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Chikrii, A.A.; Matichin, I.I. An analog of the Cauchy formula for linear systems of arbitrary fractional order. Dokl. NAN Ukrainy 2007, 1, 50–55. [Google Scholar]
- Popov, A.Y.; Sedletskii, A.M. Distribution of roots of Mittag-Leffler functions. J. Math. Sci. 2013, 190, 209–409. [Google Scholar] [CrossRef]
- Dzharbashyan, M.M. Intergalnie Preobrasovania i Predstavlenia Funkzii v Kompleksnoi Oblasti; Nauka: Moscow, Russia, 1966. [Google Scholar]
- Bannikov, A.S. On one problem of simple pursuit. Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki. 2009, 3, 3–11. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, N.N. Multiple Capture in a Group Pursuit Problem with Fractional Derivatives and Phase Restrictions. Mathematics 2021, 9, 1171. https://doi.org/10.3390/math9111171
Petrov NN. Multiple Capture in a Group Pursuit Problem with Fractional Derivatives and Phase Restrictions. Mathematics. 2021; 9(11):1171. https://doi.org/10.3390/math9111171
Chicago/Turabian StylePetrov, Nikolay Nikandrovich. 2021. "Multiple Capture in a Group Pursuit Problem with Fractional Derivatives and Phase Restrictions" Mathematics 9, no. 11: 1171. https://doi.org/10.3390/math9111171
APA StylePetrov, N. N. (2021). Multiple Capture in a Group Pursuit Problem with Fractional Derivatives and Phase Restrictions. Mathematics, 9(11), 1171. https://doi.org/10.3390/math9111171