Lexicographic Methods for Fuzzy Linear Programming
Abstract
:1. Introduction
2. Fuzzy Linear Programming: Lexicographic Approaches
2.1. Fuzzy Numbers
- A continuous mapping from to the closed interval ,
- constant on : ,
- strictly increasing on ,
- constant on : ,
- strictly decreasing on , and
- constant on : ;
2.2. Ranking Functions and Lexicographic Ranking Criteria
2.3. Lexicographic Methods for Solving Fuzzy Linear Programming Problems
Algorithm 1: Lexicographic optimization (minimization case). |
Data: Feasible set X of (Model 1) or (Model 2) and objective functions , . Initialization: Define and let ; Solve the single-objective optimization problem |
2.3.1. Hashemi et al.’s Method
2.3.2. Hosseinzadeh Lotfi et al.’s Method
2.3.3. Kaur and Kumar’s Methods
2.3.4. Ezzati et al.’s Method
2.3.5. Das et al.’s Method
2.3.6. Lexicographic Method
2.3.7. Illustrative Example and Comparative Analysis
2.4. Fuzzy Linear Assignment Problem
2.4.1. Kumar and Gupta’s Method
2.4.2. Baykasoğlu et al.’s Method
2.4.3. Lexicographic Method
- , ( is compatible with ∗);
- with such that .
2.4.4. Illustrative Example and Comparative Analysis
3. Lexicographic Methods for Fuzzy Multi-Objective Linear Programming
3.1. Yang et al.’s Method
Algorithm 2: Yang et al.’s [56] method (minimization case). |
Data: Objective functions (for ), feasible set X and Ezzati et al.’s [34] lexicographic ranking criterion , , and . output: Values of the decision variables . Initialization: Define and let ; |
3.2. Fuzzy Epsilon-Constraint Method
3.3. Illustrative Example and Comparative Analysis
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LP | Linear Programming |
FLP | Fuzzy Linear Programming |
FNLP | Fuzzy Non-linear Programming |
FFLP | Fully Fuzzy Linear Programming |
FFMOLP | Fully Fuzzy Multi-Objective Linear Programming |
LA | Linear Assignment |
FLA | Fuzzy Linear Assignment |
LLA | Lexicographic Linear Assignment |
FN | Fuzzy Number |
TFN | Triangular Fuzzy Number |
TrFN | Trapezoidal Fuzzy Number |
Appendix A
Method | Fuzzy Number | Fuzzified Elements | Unrestricted Parameters and Decision Variables | Order Relation for Fuzzy Inequality Constraints |
---|---|---|---|---|
[29] | symmetric LR-type FN | all | no | lexicographic (total order) |
[30] | TFN | all | no | n/a 1 |
[31] | LR-type FN | ’s | no | n/a |
[32] | TrFN | all | no | n/a 1 |
[33] | LR-type FN | all | yes | n/a 1 |
[34] | TFN | all | no | n/a 2 |
[40] | TrFN | all | no | partial order |
[14] | LR-type FN | all | yes | lexicographic (total order) |
import numbers class TrFN : def _ _init_ _ (self , a=0, b=0, c=0, d =0): self .a, self .b, self .c, self .d = a, b, c, d def _ _add_ _ (self , other ): if isinstance (other , numbers . Number ): other = TrFN (other , other , other , other ) return TrFN ( self .a+ other .a, self .b+ other .b, self .c+ other .c, self .d+ other .d) def _ _sub_ _ (self , other ): if isinstance (other , numbers . Number ): other = TrFN (other , other , other , other ) return TrFN ( self .a- other .d, self .b- other .c, self .c- other .b, self .d- other .a) def _ _neg_ _ ( self ): return TrFN (- self .d, -self .c, -self .b, -self .a) def _ _str_ _ ( self ): return ’TrFN (%s ,%s ,%s ,%s)’ % ( self .a, self .b, self .c, self .d) def _ _repr_ _ ( self ): return ’TrFN (%s ,%s ,%s ,%s)’ % ( self .a, self .b, self .c, self .d) |
import numbers class Lex: def _ _init_ _ (self , ∗ args ): self .l = list ( args ) def _ _lt_ _ (self , other ): if isinstance (other , numbers . Number ): other = Lex (∗( other ,)∗ len ( self .l)) return self .l < other .l def _ _gt_ _ (self , other ): if isinstance (other , numbers . Number ): other = Lex (∗( other ,)∗ len ( self .l)) return self .l > other .l def _ _getitem_ _ (self , b): return self .l[b] def _ _eq_ _ (self , other ): if isinstance (other , numbers . Number ): other = Lex (∗( other ,)∗ len ( self .l)) return self .l == other .l def _ _le_ _ (self , other ): return self < other or self == other def _ _ge_ _ (self , other ): return self > other or self == other def _ _add_ _ (self , other ): return Lex (∗[ self .l[i]+ other .l[i] for i in range (len ( self .l ))]) def _ _sub_ _ (self , other ): return Lex (∗[ self .l[i]- other .l[i] for i in range (len ( self .l ))]) def _ _neg_ _ ( self ): return Lex (∗[ - self .l[i] for i in range (len( self .l ))]) def _ _str_ _ ( self ): return ’Lex (%s)’%’,’. join ([ ’%s’]∗ len( self .l)) % tuple ( self .l) def _ _repr_ _ ( self ): return ’Lex (%s)’%’,’. join ([ ’%s’]∗ len( self .l)) % tuple ( self .l) |
from munkres import Munkres from lex import Lex from trfn import TrFN c11 , c12 , c13 , c14 = ( TrFN (0 ,1 ,4 ,15) , TrFN (3 ,5 ,8 ,10) , TrFN (1 ,2 ,7 ,11) , TrFN (4 ,6 ,8 ,9)) c21 , c22 , c23 , c24 = ( TrFN (4 ,5 ,5 ,8) , TrFN (2 ,5 ,6 ,7) , TrFN (1 ,3 ,5 ,11) , TrFN (3 ,6 ,9 ,11)) c31 , c32 , c33 , c34 = ( TrFN (1 ,2 ,8 ,9) , TrFN (1 ,5 ,6 ,8) , TrFN (5 ,6 ,8 ,10) , TrFN (1 ,4 ,5 ,10)) c41 , c42 , c43 , c44 = ( TrFN (5 ,7 ,9 ,12) , TrFN (2 ,4 ,6 ,8) , TrFN (2 ,5 ,6 ,7) , TrFN (4 ,6 ,6 ,7)) C = [[ c11 , c12 , c13 , c14], [c21 , c22 , c23 , c24], [c31 , c32 , c33 , c34], [c41 , c42 , c43 , c44 ]] f1 = lambda fn: (fn.a+fn.b+fn.c+fn.d )/4 f2 = lambda fn: (fn.b+fn.c)/2 f3 = lambda fn: fn.d-fn.a f4 = lambda fn: fn.b-fn.a lexC = [[ Lex(f1(C[i][j]), f2(C[i][j]), f3(C[i][j]), f4(C[i][j ])) for j in range (4)] for i in range (4)] m = Munkres () indices = m. compute ( lexC ) assignment = [0]∗4 cost = TrFN () for row , column in indices : assignment [row] = column + 1 cost += C[row ][ column ] print (’assignment =(%s ,%s ,%s ,%s)’% tuple ( assignment )) print (’fuzzy cost =%s’% cost ) |
References
- Bellman, R.E.; Zadeh, L.A. Decision-making in fuzzy environment. Manag. Sci. 1970, 17, 141–164. [Google Scholar] [CrossRef]
- Lamata, M.; Pelta, D.; Verdegay, J. Optimisation problems as decision problems: The case of fuzzy optimisation problems. Inf. Sci. 2017, 460–461, 377–388. [Google Scholar] [CrossRef]
- Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Lodwick, W.A.; Thipwiwatpotjana, P. Flexible and Generalized Uncertainty Optimization—Theory and Methods; Studies in Computational Intelligence; Springer International Publishing AG: Cham, Switzerland, 2017; Volume 696. [Google Scholar] [CrossRef]
- Zimmermann, H.J. Description and optimization of fuzzy systems. Int. J. Gen. Syst. 1976, 2, 209–215. [Google Scholar] [CrossRef]
- Tanaka, H.; Okuda, T.; Asai, K. On Fuzzy-Mathematical Programming. J. Cybern. 1974, 3, 37–46. [Google Scholar] [CrossRef]
- Verdegay, J.L. Fuzzy mathematical programming. In Fuzzy Information and Decision Processes; Gupta, M.M., Sanchez, E., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1982; pp. 231–237. [Google Scholar]
- Verdegay, J.L. Progress on Fuzzy Mathematical Programming: A personal perspective. Fuzzy Sets Syst. 2015, 281, 219–226. [Google Scholar] [CrossRef]
- Tanaka, H.; Asai, K. Fuzzy linear programming problems with fuzzy numbers. Fuzzy Sets Syst. 1984, 13, 1–10. [Google Scholar] [CrossRef]
- Campos, L.; Verdegay, J.L. Linear programming problems and ranking of fuzzy numbers. Fuzzy Sets Syst. 1989, 32, 1–11. [Google Scholar] [CrossRef]
- Cadenas, J.M.; Verdegay, J.L. Using ranking functions in multiobjective fuzzy linear programming. Fuzzy Sets Syst. 2000, 111, 47–53. [Google Scholar] [CrossRef]
- Kaur, J.; Kumar, A. Mehar’s method for solving fully fuzzy linear programming problems with L-R fuzzy parameters. Appl. Math. Model. 2013, 37, 7142–7153. [Google Scholar] [CrossRef]
- Yang, X.P.; Cao, B.Y.; Zhou, X.G. Solving fully fuzzy linear programming problems with flexible constraints based on a new order relation. J. Intell. Fuzzy Syst. 2015, 29, 1539–1550. [Google Scholar] [CrossRef]
- Pérez-Cañedo, B.; Concepción-Morales, E.R. A method to find the unique optimal fuzzy value of fully fuzzy linear programming problems with inequality constraints having unrestricted L-R fuzzy parameters and decision variables. Expert Syst. Appl. 2019, 123, 256–269. [Google Scholar] [CrossRef]
- Pérez-Cañedo, B.; Verdegay, J.L.; Miranda Pérez, R. An epsilon-constraint method for fully fuzzy multiobjective linear programming. Int. J. Intell. Syst. 2020, 35, 600–624. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–626. [Google Scholar] [CrossRef]
- Bojadziev, G.; Bojadziev, M. Fuzzy Sets, Fuzzy Logic, Applications; Advances in Fuzzy Systems—Applications and Theory; World Scientific Publishing: Singapore, 1995; Volume 5, p. 283. [Google Scholar]
- Hanss, M. Applied Fuzzy Arithmetic; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kerre, E.E. Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst. 2001, 118, 375–385. [Google Scholar] [CrossRef]
- Wang, M.L.; Wang, H.F.; Chih-Lung, L. Ranking fuzzy number based on lexicographic screening procedure. Int. J. Inf. Technol. Decis. Mak. 2005, 4, 663–678. [Google Scholar] [CrossRef]
- Farhadinia, B. Ranking fuzzy numbers based on lexicographical ordering. Int. J. Appl. Math. Comput. Sci. 2009, 5, 248–251. [Google Scholar]
- Greco, S.; Ehrgott, M.; Figueira, J.R. Multiple Criteria Decision Analysis. In International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2016; Volume 233, p. 1355. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.J.; Feuring, T. Evolutionary algorithm solution to fuzzy problems: Fuzzy linear programming. Fuzzy Sets Syst. 2000, 109, 35–53. [Google Scholar] [CrossRef]
- Ramík, J.; Římánek, J. Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 1985, 16, 123–138. [Google Scholar] [CrossRef]
- Ebrahimnejad, A.; Verdegay, J.L. Fuzzy Sets-Based Methods and Techniques for Modern Analytics. In Studies in Fuzziness and Soft Computing; Springer International Publishing: Cham, Switzerland, 2018; Volume 364, p. 361. [Google Scholar] [CrossRef]
- Arana-Jiménez, M. Nondominated solutions in a fully fuzzy linear programming problem. Math. Methods Appl. Sci. 2018, 41, 7421–7430. [Google Scholar] [CrossRef]
- Stanojević, B.; Dzitac, S.; Dzitac, I. Solution approach to a special class of full fuzzy linear programming problems. Procedia Comput. Sci. 2019, 162, 260–266. [Google Scholar] [CrossRef]
- Ehrgott, M. Multicriteria Optimization, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005; p. 323. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.M.; Modarres, M.; Nasrabadi, E.; Nasrabadi, M.M. Fully fuzzified linear programming, solution and duality. J. Intell. Fuzzy Syst. 2006, 17, 253–261. [Google Scholar]
- Hosseinzadeh Lotfi, F.; Allahviranloo, T.; Alimardani Jondabeh, M.; Alizadeh, L. Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution. Appl. Math. Model. 2009, 33, 3151–3156. [Google Scholar] [CrossRef]
- Kaur, J.; Kumar, A. A New Method to Find the Unique Fuzzy Optimal Value of Fuzzy Linear Programming Problems. J. Optim. Theory Appl. 2013, 156, 529–534. [Google Scholar] [CrossRef]
- Kaur, J.; Kumar, A. Unique fuzzy optimal value of fully fuzzy linear programming problems. Control Cybern. 2012, 41, 497–508. [Google Scholar]
- Kaur, J.; Kumar, A. An Introduction to Fuzzy Linear Programming Problems: Theory, Methods and Applications. In Studies in Fuzziness and Soft Computing; Springer International Publishing: Cham, Switzerland, 2016; Volume 340, p. 132. [Google Scholar] [CrossRef]
- Ezzati, R.; Khorram, E.; Enayati, R. A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Appl. Math. Model. 2015, 39, 3183–3193. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Edalatpanah, S.A. A New Approach for Solving Fully Fuzzy Linear Programming by Using the Lexicography Method. Adv. Fuzzy Syst. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimnejad, A. An effective computational attempt for solving fully fuzzy linear programming using MOLP problem. J. Ind. Prod. Eng. 2019, 36, 59–69. [Google Scholar] [CrossRef]
- Bhardwaj, B.; Kumar, A. A note on “A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem”. Appl. Math. Model. 2015, 39, 5982–5985. [Google Scholar] [CrossRef]
- Pérez-Cañedo, B.; Concepción-Morales, E.R.; Edalatpanah, S.A. A Revised Version of a Lexicographical-based Method for Solving Fully Fuzzy Linear Programming Problems with Inequality Constraints. Fuzzy Inf. Eng. 2020, in press. [Google Scholar] [CrossRef]
- Tosarkani, B.M.; Amin, S.H. A possibilistic solution to configure a battery closed-loop supply chain: Multi-objective approach. Expert Syst. Appl. 2018, 92, 12–26. [Google Scholar] [CrossRef]
- Das, S.K.; Mandal, T.; Edalatpanah, S.A. A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Appl. Intell. 2017, 46, 509–519. [Google Scholar] [CrossRef]
- Pérez-Cañedo, B.; Rosete, A.; Verdegay, J.L.; Concepción-Morales, E.R. A Fuzzy Goal Programming Approach to Fully Fuzzy Linear Regression. Processing and Management of Uncertainty in Knowledge-Based Systems. In Communications in Computer and Information Science; IPMU 2020; Lesot, M.J., Vieira, S., Reformat, M.Z., Carvalho, J.P., Wilbik, A., Bouchon-Meunier, B., Yager, R.R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1238, pp. 677–688. [Google Scholar] [CrossRef]
- Pérez-Cañedo, B.; Concepción-Morales, E.R. On LR-type fully intuitionistic fuzzy linear programming with inequality constraints: Solutions with unique optimal values. Expert Syst. Appl. 2019, 128, 246–255. [Google Scholar] [CrossRef]
- Kuhn, H.H. The hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Cañedo, B.; Concepción-Morales, E.R. A Lexicographic Approach to Fuzzy Linear Assignment Problems with Different Types of Fuzzy Numbers. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2020, 28, 421–441. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, A. Methods for Solving Fuzzy Assignment Problems and Fuzzy Travelling Salesman Problems with Different Membership Functions. Fuzzy Inf. Eng. 2011, 3, 3–21. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Subulan, K.; Karaslan, F.S. A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification. Appl. Soft Comput. 2016, 42, 1–17. [Google Scholar] [CrossRef]
- Yu, P.L. A class of solutions for group decision problems. Manag. Sci. 1973, 19, 936–946. [Google Scholar] [CrossRef]
- Burkard, R.E.; Hahn, W.; Zimmermann, U. An algebraic approach to assignment problems. Math. Program. 1977, 12, 318–327. [Google Scholar] [CrossRef]
- Clapper, B. Munkres Implementation for Python. Available online: http://software.clapper.org/munkres/ (accessed on 2 August 2020).
- Chen, S.H. Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets Syst. 1985, 17, 113–129. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Hajjari, T. A new approach for ranking of trapezoidal fuzzy numbers. Comput. Math. Appl. 2009, 57, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, A.; Hosseinzadeh Lotfi, F.; Rostamy-Malkhalifeh, M.; Allahviranloo, T. A New Method for Defuzzification and Ranking of Fuzzy Numbers Based on the Statistical Beta Distribution. Adv. Fuzzy Syst. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.J.; Feuring, T.; Hayashi, Y. Multi-objective fully fuzzified linear programming. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2001, 9, 605–621. [Google Scholar] [CrossRef]
- Jalil, S.A.; Sadia, S.; Javaid, S.; Ali, Q.M. A Solution Approach for Solving Fully Fuzzy Multiobjective Solid Transportation Problem. Int. J. Agric. Stat. Sci. 2017, 13, 75–84. [Google Scholar]
- Nasseri, H.; Mortezania, M.; Mirmohseni, M. A New Method for Solving Fully Fuzzy Multi Objective Supplier Selection Problem. Int. J. Res. Ind. Eng. 2017, 6, 214–227. [Google Scholar] [CrossRef]
- Yang, X.P.; Cao, B.Y.; Lin, H.T. Multi-objective fully fuzzy linear programming problems with triangular fuzzy numbers. In Proceedings of the 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, China, 19–21 August 2014; pp. 171–177. [Google Scholar] [CrossRef]
- Pérez-Cañedo, B.; Verdegay, J.L.; Rosete, A.; Concepción-Morales, E.R. Fully Fuzzy Multi-Objective Berth Allocation Problem. In Hybrid Artificial Intelligent Systems; Forthcoming; Lecture Notes In Computer Science; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Bello, R.; Verdegay, J.L. Rough sets in the Soft Computing environment. Inf. Sci. 2012, 212, 1–14. [Google Scholar] [CrossRef]
- Villacorta, P.J.; Rabelo, C.A.; Pelta, D.A.; Verdegay, J.L. FuzzyLP: An R Package for Solving Fuzzy Linear Programming Problems. In Granular, Soft and Fuzzy Approaches for Intelligent Systems; Studies in Fuzziness and Soft Computing; Kacprzyk, J., Filev, D., Beliakov, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 344, pp. 209–230. [Google Scholar] [CrossRef]
- Biswas, P.; Pal, B.B. A fuzzy goal programming method to solve congestion management problem using genetic algorithm. Decis. Making: Appl. Manag. Eng. 2019, 2, 36–53. [Google Scholar] [CrossRef]
Method | ||
---|---|---|
Solution | Adding Non-Negative Fuzzy Slack Variables | Using Order Relation ≤ Instead of |
Fuzzy value |
R1 | R2 | R3 | R4 | |
---|---|---|---|---|
T1 | ●○ | ∆ | ||
T2 | ∆ | ○ | ● | |
T3 | ●○∆ | |||
T4 | ●∆ | ○ |
Pareto Optimal Fuzzy Solutions | ||||||
---|---|---|---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Cañedo, B.; Verdegay, J.L.; Concepción-Morales, E.R.; Rosete, A. Lexicographic Methods for Fuzzy Linear Programming. Mathematics 2020, 8, 1540. https://doi.org/10.3390/math8091540
Pérez-Cañedo B, Verdegay JL, Concepción-Morales ER, Rosete A. Lexicographic Methods for Fuzzy Linear Programming. Mathematics. 2020; 8(9):1540. https://doi.org/10.3390/math8091540
Chicago/Turabian StylePérez-Cañedo, Boris, José Luis Verdegay, Eduardo René Concepción-Morales, and Alejandro Rosete. 2020. "Lexicographic Methods for Fuzzy Linear Programming" Mathematics 8, no. 9: 1540. https://doi.org/10.3390/math8091540
APA StylePérez-Cañedo, B., Verdegay, J. L., Concepción-Morales, E. R., & Rosete, A. (2020). Lexicographic Methods for Fuzzy Linear Programming. Mathematics, 8(9), 1540. https://doi.org/10.3390/math8091540