p-Laplacian Equations in
R
+
N
with Critical Boundary Nonlinearity
Abstract
:1. Introduction
2. Concentration–Compactness Analysis
2.1. The Profile Decomposition
- .
- .
- for .
- .
- .
- .
- .
- in , in as .
- , as .
- .
- in as , consequently in as .
- satisfies the inequality
- satisfies the inequality
2.2. Safe Regions
2.3. Pohožaev Identity
3. Existence of Multiple Solutions
- are critical values of .
- If , then , where
4. Results
Author Contributions
Funding
Conflicts of Interest
Appendix A. Estimates on Solutions of p-Laplacian Equations in R + N
Appendix B. Estimate via the Wolff Potential
Appendix C. The Sobolev Imbedding Theorem
References
- Brezis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Anal. Math. 1983, 36, 437–477. [Google Scholar] [CrossRef]
- Devillanova, G.; Solimini, S. Concentrations estimates and multiple solutions to elliptic problems at critical growth. Adv. Differ. Equ. 2002, 7, 1257–1280. [Google Scholar]
- Cerami, G.; Devillanova, G.; Solimini, S. Infinitely many bound states solutions for some nonlinear scalar field equations. Calc. Var. Partial Differ. Equ. 2005, 23, 139–168. [Google Scholar] [CrossRef]
- Liu, X.P.; Jia, M.; Ge, W.G. The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator. Appl. Math. Lett. 2017, 65, 56–62. [Google Scholar] [CrossRef]
- Li, X.P.; Tian, Y.S.; Ge, W.G. Multiplicity of Symmetric Positive Solutions for a Multipoint Boundary Value Problem With p-Laplacian Operator. Adv. Math. 2014. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXJZ201403011.htm (accessed on 5 July 2020).
- Liu, X.P.; Jia, M.; Ge, W.G. Multiple solutions of a p-Laplacian model involving a fractional derivative. Adv. Differ. Equ. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.; Peng, S.; Yan, S. Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth. J. Funct. Anal. 2012, 262, 2861–2902. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Q.; Zhao, J.F. p-Laplacian equation in RN with finite potential via the truncation method. Adv. Nonlinear Stud. 2017, 17, 595–610. [Google Scholar] [CrossRef]
- Liu, X.Q.; Zhao, J.F.; Liu, J.Q. p-Laplacian equations in RN with finite potential via truncation method, the critical case. J. Math. Anal. Appl. 2017, 455, 58–88. [Google Scholar]
- Miao, C.M.; Ge, W.G. Existence of positive solutions for singular impulsive differential equations with integral boundary conditions. Math. Methods Appl. Sci. 2015, 38, 1146–1157. [Google Scholar] [CrossRef]
- Zhao, X.K.; Chai, C.W.; Ge, W.G. Existence and nonexistence results for a class of fractional boundary value problems. J. Appl. Math. Comput. 2013, 41, 17–31. [Google Scholar] [CrossRef]
- Swanson, C.A.; Yu, L.S. Critical p-Laplacian problems in RN. Ann. Mat. Pura Appl. 1995, 169, 233–250. [Google Scholar] [CrossRef]
- Ogras, S.; Mashiyev, R.A.; Avci, M. Existence of Solutions for a Class of Elliptic Systems in Involving the Laplacian. J. Inequal Appl. 2008, 2008, 612938. [Google Scholar] [CrossRef] [Green Version]
- Canino, A.; Sciunzi, B.; Trombetta, A. Existence and uniqueness for p-Laplace equations involving singular nonlinearities. Nonl. Diff. Equa. Appl. 2016, 23, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, S.; Vannella, G. The Brezis-Nirenberg type problem for the p-laplacian (1 < p < 2): Multiple positive solutions. J. Differ. Equ. 2019, 266, 4510–4532. [Google Scholar]
- Clapp, M.; Tiwari, S. Multiple solutions to a pure supercritical problem for the p-Laplacian. Calc. Var. Partial. Differ. Equ. 2016, 55, 1–23. [Google Scholar] [CrossRef]
- Esposito, F.; Sciunzi, B. On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications. J. Funct. Anal. 2020, 278, 108346. [Google Scholar] [CrossRef] [Green Version]
- Oliva, F.; Petitta, F. Finite and infinite energy solutions of singular elliptic problems: Existence and uniqueness. J. Differ. Equ. 2018, 264, 311–340. [Google Scholar] [CrossRef] [Green Version]
- Tintarev, K.; Fieseler, K.-H. Concentration Compactness, Functional Analytic Grounds and Applications; Imperial College Press: London, UK, 2007. [Google Scholar]
- Tintarev, K. Concentration Analysis and Cocompactness, in Concentration Analysis and Applications to PDE; Birkhäuser: Basel, Switzerland, 2012; pp. 117–141. [Google Scholar]
- Damascelli, L. Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1998, 15, 493–516. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Q.; Zhao, J.F.; Liu, J.Q. Exact decay estimate on solutions of critical p-Laplacian equations in . J. Math. Anal. Appl. 2019, 469, 220–238. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef] [Green Version]
- Mawhin, J.; Willem, M. Critical Point Theory and Hamiltonian Systems; Applied Mathematical Sciences; Springer: New York, NY, USA, 1989; Volume 74. [Google Scholar]
- Kilpeläinen, T.; Malý, J. The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 1994, 172, 137–161. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, X.; Zhao, J.; Liu, X.
p-Laplacian Equations in
Miao X, Zhao J, Liu X.
p-Laplacian Equations in
Miao, Xu, Junfang Zhao, and Xiangqing Liu.
2020. "p-Laplacian Equations in
Miao, X., Zhao, J., & Liu, X.
(2020). p-Laplacian Equations in