A Fuzzy-Statistical Tolerance Interval from Residuals of Crisp Linear Regression Models
Abstract
:1. Introduction
2. Crisp Linear Regression
3. Fuzzy Linear Regression
4. Proposed Method
5. Case Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tanaka, H.; Uegima, S.; Asai, K. Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man Cybernet. 1982, 12, 903–907. [Google Scholar]
- Tanaka, H.; Watada, J. Possibilistic linear systems and their application to the linear regression model. Fuzzy Sets Syst. 1988, 27, 275–289. [Google Scholar] [CrossRef]
- Savić, D.; Pedrycz, W. Evaluation of fuzzy linear regression models. Fuzzy Sets Syst. 1991, 39, 51–63. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy statistics: Hypothesis testing. Soft Comput. 2004, 9, 512–518. [Google Scholar] [CrossRef]
- Chang, Y.-H.O.; Ayyub, B.M. Fuzzy regression methods—A comparative assessment. Fuzzy Sets Syst. 2001, 119, 187–203. [Google Scholar] [CrossRef]
- Kim, K.J.; Moskowitz, H.; Köksalan, M. Fuzzy versus statistical linear regression. Eur. J. Oper. Res. 1996, 92, 417–434. [Google Scholar] [CrossRef]
- Adjenughwure, K.; Papadopoulos, B. Constructing fuzzy-statistical prediction intervals from crisp linear regression models. In Proceedings of the 16th International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 13–18 September 2018. [Google Scholar]
- Adjenughwure, K.; Papadopoulos, B. Constructing fuzzy numbers from arbitrary statistical intervals. In Proceedings of the 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), Rhodes, Greece, 25–27 May 2018; pp. 1–6. [Google Scholar]
- Kao, C.; Chyu, C.-L. A fuzzy linear regression model with better explanatory power. Fuzzy Sets Syst. 2002, 126, 401–409. [Google Scholar] [CrossRef]
- Wallis, W.A. Tolerance intervals for linear regression. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 31 July–12 August 1950; University of California Press: Berkeley, CA, USA, 1951. [Google Scholar]
- Young, D.S. tolerance: An R Package for Estimating Tolerance Intervals. J. Stat. Softw. 2010, 36. [Google Scholar] [CrossRef] [Green Version]
- Wald, A.; Wolfowitz, J. Tolerance Limits for a Normal Distribution. Ann. Math. Stat. 1946, 17, 208–215. [Google Scholar] [CrossRef]
- Howe, W.G. Two-sided Tolerance Limits for Normal Populations—Some Improvements. J. Am. Stat. Assoc. 1969, 64, 610–620. [Google Scholar]
- Sfiris, D.; Papadopoulos, B. Non-asymptotic fuzzy estimators based on confidence intervals. Inf. Sci. 2014, 279, 446–459. [Google Scholar] [CrossRef]
- Dubois, D.; Foulloy, L.; Mauris, G.; Prade, H. Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities. Reliab. Comput. 2004, 10, 273–297. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y. A systematic approach to optimizing h value for fuzzy linear regression with symmetric triangular fuzzy numbers. Math. Probl. Eng. 2013. [Google Scholar] [CrossRef] [Green Version]
- Lichman, M. UCI Machine Learning Repository; School of Information and Computer Science, University of California: Irvine, CA, USA, 2013; Available online: http://archive.ics.uci.edu/ml (accessed on 24 August 2020).
- Woods, H.; Steinour, H.H.; Starke, H.R. Effect of composition of Portland cement on heat evolved during hardening. Ind. Eng. Chem. 1932, 24, 1207–1214. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A. Introduction to Linear Regression Analysis, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1992. [Google Scholar]
- Adjenughwure, K.; Papadopoulos, B. Fuzzy-statistical prediction intervals from crisp regression models. Evol. Syst. 2019, 11, 201–213. [Google Scholar] [CrossRef]
29.50 | 31.30 | 37.60 | 39.90 | 39.90 | 40.30 | 41.50 | 43.60 | 45.70 | 47.80 | 49.50 | |
79.99 | 75.63 | 69.25 | 62.75 | 64.66 | 63.09 | 61.51 | 60.07 | 58.22 | 58.43 | 60.57 | |
133.60 | 137.63 | 147.86 | 196.76 | 220.53 | 223.25 | 233.19 | 265.67 | 335.16 | 411.29 | 460.68 |
50.10 | 50.20 | 49.90 | 50.00 | 50.00 | 50.00 | 50.90 | 53.10 | 55.20 | |
58.23 | 58.03 | 57.53 | 55.68 | 55.24 | 54.51 | 50.08 | 50.05 | 49.72 | |
477.96 | 474.02 | 466.80 | 466.16 | 469.80 | 468.95 | 476.24 | 499.39 | 521.20 |
2 | 4 | 6 | 8 | 10 | 12 | 16 | 18 | |
14 | 16 | 14 | 18 | 18 | 22 | 18 | 22 |
Hvalue | A | Total Credibility |
---|---|---|
0.3148 | y ∗ = (−610.8251, 0.0000) + (19.1484, 0.0000)x1 + (1.4018, 1.2301)x2 | 0.1371 |
0 | y = (−610.8233, 0.0000) + (19.1484, 0.0000)x1 + (1.4017, 0.8429)x2 | 0.1082 |
0.5 | y = (−610.8240, 0.0000) + (19.1484, 0.0000)x1 + (1.4017, 1.6857)x2 | 0.1271 |
Confidence Level | Linear Model Based on Fuzzy Prediction Intervals (Data from Liu and Chen, 2013) | Total Credibility | Lowest Membership Value |
---|---|---|---|
90% | y = (−1590.9) + (29.6726)x1 + (9.9906)x2 | 0.2153 | 0 |
95% | y = (−1590.9) + (29.6726)x1 + (9.9906)x2 | 0.2056 | 0.0169 |
99% | y = (−1590.9) + (29.6726)x1 + (9.9906)x2 | 0.1949 | 0.0566 |
Proportion | Linear Model Based on Fuzzy Tolerance Interval (Data from Liu and Chen 2013) | Total Credibility | Lowest Membership Value |
---|---|---|---|
90% | y = (−1590.9) + (29.6726)x1 + (9.9906)x2 | 0.2029 | 0 |
95% | y = (−1590.9) + (29.6726)x1 + (9.9906)x2 | 0.1871 | 0.0793 |
99% | y = (−1590.9) + (29.6726)x1 + (9.9906)x2 | 0.1631 | 0.1794 |
Hvalue | Fuzzy Model (Data from Liu and Chen 2013) | Total Credibility |
---|---|---|
0.2666 | y ∗ = (12.0000, 1.3635) + (0.6250,0.1704)x | 1.4960 |
0 | y = (12.0000, 1.000) + (0.6250,0.1300)x | 1.2984 |
0.7 | y = (12.0000, 3.330) + (0.6250,0.4200)x | 0.9736 |
Confidence Level | Linear Model Based on Fuzzy Prediction Interval (Data from Liu and Chen 2013) | Total Credibility | Lowest Membership Value |
---|---|---|---|
90% | y = (12.93) + (0.54)x | 1.5612 | 0.1371 |
95% | y = (12.93) + (0.54)x | 1.4698 | 0.1825 |
99% | y = (12.93) + (0.54)x | 1.3651 | 0.2155 |
Proportion | Linear Model Based on Fuzzy Tolerance Interval (Data from Liu and Chen 2013) | Total Credibility | Lowest Membership Value |
---|---|---|---|
90% | y = (12.93) + (0.54)x | 1.3813 | 0.2921 |
95% | y = (12.93) + (0.54)x | 1.1850 | 0.4034 |
99% | y = (12.93) + (0.54)x | 0.8866 | 0.5627 |
Hvalue | Fuzzy Model (Car Data UCI Repository) | Total Credibility |
---|---|---|
0.3 | y = (45.4865, 13.8711) + (−0.0026, 0.0000)x1 + (−1.091, 0.0000)x2 | 4.4629 |
0 | y * = (45.4865, 9.7097) + (−0.0026, 0.0000)x1 + (−1.091, 0.0000)x2 | 5.4725 |
0.5 | y = (45.4865, 19.4195) + (−0.0026, 0.0000)x1 + (−1.091, 0.0000)x2 | 3.7626 |
Confidence Level | Linear Model Based on Fuzzy Prediction Intervals (Car data UCI Repository) | Total Credibility | Lowest Membership Value |
---|---|---|---|
90% | y = (47.7694) + (−0.0066)x1 + (−0.0420)x2 | 7.9395 | 0 |
95% | y = (47.7694) + (−0.0066)x1 + (−0.0420)x2 | 7.6792 | 0 |
99% | y = (47.7694) + (−0.0066)x1 + (−0.0420)x2 | 7.3592 | 0 |
Proportion | Linear Model Based on Fuzzy Tolerance Interval (Car data UCI Repository) | Total Credibility | Lowest Membership Value |
---|---|---|---|
90% | y = (47.7694) + (−0.0066)x1 + (−0.0420)x2 | 7.7065 | 0 |
95% | y = (47.7694) + (−0.0066)x1 + (−0.0420)x2 | 7.4172 | 0 |
99% | y = (47.7694) + (−0.0066)x1 + (−0.0420)x2 | 7.0796 | 0 |
Hvalue | Fuzzy Model (Hald Cement Dataset [17]) | Total Credibility |
---|---|---|
0.2487 | y ∗ = (79.3955, 0.0000) + (1.5212, 0.2474)x1 + (0.3238, 0.0000)x2 + (−0.0839, 0.1453)x3 + (0.3187, 0.0000)x4 | 1.9208 |
0 | y = (79.3955, 0.0000) + (1.5212, 0.1859)x1 + (0.3238, 0.0000)x2 + (−0.0839, 0.1091)x3 + (0.3187, 0.0000)x4 | 1.7102 |
0.5 | y ∗ = (79.3955, 0.0000) + (1.5212, 0.3718)x1 + (0.3238, 0.0000)x2 + (−0.0839, 0.2183)x3 + (0.3187, 0.0000)x4 | 1.7059 |
Confidence Level | Linear Model Based on Fuzzy Prediction Intervals (Hald Cement Dataset [17]) | Total Credibility | Lowest Membership Value |
---|---|---|---|
90% | y = (62.4054) + (1.5511)x1 + (0.5102)x2 + (0.1091)x3 + (−0.1441)x4 | 1.8326 | 0.0762 |
95% | y = (62.4054) + (1.5511)x1 + (0.5102)x2 + (0.1091)x3 + (−0.1441)x4 | 1.7302 | 0.1248 |
99% | y = (62.4054) + (1.5511)x1 + (0.5102)x2 + (0.1091)x3 + (−0.1441)x4 | 1.6160 | 0.1602 |
Proportion | Linear Model Based on Fuzzy Tolerance Interval (Hald Cement Dataset [17]) | Total Credibility | Lowest Membership Value |
---|---|---|---|
90% | y = (62.4054) + (1.5511)x1 + (0.5102)x2 + (0.1091)x3 + (−0.1441)x4 | 1.7655 | 0.1870 |
95% | y = (62.4054) + (1.5511)x1 + (0.5102)x2 + (0.1091)x3 + (−0.1441)x4 | 1.6683 | 0.2298 |
99% | y = (62.4054) + (1.5511)x1 + (0.5102)x2 + (0.1091)x3 + (−0.1441)x4 | 1.5724 | 0.2609 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kandari, M.; Adjenughwure, K.; Papadopoulos, K. A Fuzzy-Statistical Tolerance Interval from Residuals of Crisp Linear Regression Models. Mathematics 2020, 8, 1422. https://doi.org/10.3390/math8091422
Al-Kandari M, Adjenughwure K, Papadopoulos K. A Fuzzy-Statistical Tolerance Interval from Residuals of Crisp Linear Regression Models. Mathematics. 2020; 8(9):1422. https://doi.org/10.3390/math8091422
Chicago/Turabian StyleAl-Kandari, Maryam, Kingsley Adjenughwure, and Kyriakos Papadopoulos. 2020. "A Fuzzy-Statistical Tolerance Interval from Residuals of Crisp Linear Regression Models" Mathematics 8, no. 9: 1422. https://doi.org/10.3390/math8091422
APA StyleAl-Kandari, M., Adjenughwure, K., & Papadopoulos, K. (2020). A Fuzzy-Statistical Tolerance Interval from Residuals of Crisp Linear Regression Models. Mathematics, 8(9), 1422. https://doi.org/10.3390/math8091422