A New Method for Analyzing the Performance of the Harmony Search Algorithm
Abstract
:1. Introduction
- (1)
- The update success rate (defined as the rate that the new generated harmony is better than the worst harmony in HM.) of the take-one strategy is
- (2)
- The update success rate of the take-all strategy is
- (1)
- New analysis strategies, namely, the take-k and take-all schemes, are presented. The analysis assumptions used are closer to the conditions in the actual optimization process than are the previous extreme assumptions.
- (2)
- An adaptive take-k strategy is proposed for improving the harmony search algorithm.
2. Standard Harmony Search Algorithm
Algorithm 1. The pseudocode of standard HS algorithm. | |
Input: MaxT: maximum number of iterations HMCR: harmony memory consideration rate HMS: harmony memory size PAR: pitch-adjusting rate fw: fret width Output: Best harmony Xbest | |
|
3. Take-One Strategy and Take-All Strategy
4. Take-K Strategy and Take-All Strategy
4.1. Concepts and Assumptions
Algorithm 2. The Pseudocode for improvising new harmony for the take-k strategy. |
For i = 1➔D |
If rand(0,1) < k/D // each dimension has a k/D chance of being adjusted. |
If rand(0,1) < HMCR |
//combinatorial operator |
If rand(0,1) < PAR |
//local-adjusting operator |
End |
Else |
// random search operator |
End |
End |
End |
4.2. Update Success Rate of Take-k and Take-All Strategies
5. Simulation Experiments
5.1. Experimental Environment and Parameter Settings
5.2. Update Success Rate and Convergence Speed
5.3. Analysis of the Take-k-Based DIHS Results
- (1)
- The population is randomly initialized, and every individual has a bad fitness value. In this case, DIHS has a higher probability than the other algorithms of finding an improved solution.
- (2)
- In the early stage of the search, the DIHS algorithm perturbs the search space to find the global optimal region with a high perturbation step fw, resulting in a rapid decrease in the probability of finding a better solution than the current solution.
5.4. Convergence Rate
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. Harmony search optimization: Application to pipe network design. Int. J. Model. Simul. 2002, 22, 125–133. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W. A new structural optimization method based on the harmony search algorithm. Comput. Struct. 2004, 82, 781–798. [Google Scholar] [CrossRef]
- Tuo, S.; Yong, L.; Deng, F.; Li, Y.; Lin, Y.; Lu, Q. A harmony search algorithm for high-dimensional multimodal optimization problems. Digit. Sign. Process. 2015, 46, 151–163. [Google Scholar] [CrossRef]
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
- Deng, F.; Tuo, S.; Yong, L.; Zhou, T. Construction example for algebra system using harmony search algorithm. Math. Probl. Eng. 2015, 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Tuo, S.; Yong, L.; Deng, F.; Li, Y.; Lin, Y.; Lu, Q. HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems. PLoS ONE 2017, 12, e0175114. [Google Scholar] [CrossRef]
- Li, Z.; Zou, D.; Kong, Z. A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss. Eng. Appl. Artif. Intell. 2019, 84, 18–40. [Google Scholar] [CrossRef]
- Keshtegar, B.; Hao, P.; Wang, Y.; Li, Y. Optimum design of aircraft panels based on adaptive dynamic harmony search. Thin Walled Struct. 2017, 118, 37–45. [Google Scholar] [CrossRef]
- Xu, C.; Wang, X. Transient content caching and updating with modified harmony search for Internet of Things. Digit. Commun. Netw. 2019, 5, 24–33. [Google Scholar] [CrossRef]
- Yi, J.; Gao, L.; Li, X.A.; Shoemaker, C.; Lu, C. An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization. Knowl. Based Syst. 2019, 170, 1–19. [Google Scholar] [CrossRef]
- Li, G.; Zeng, B.; Liao, W.; Li, X.; Gao, L. A new AGV scheduling algorithm based on harmony search for material transfer in a real-world manufacturing system. Adv. Mech. Eng. 2018, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Wu, J.; Tan, Q.K.; Tan, Z.F.; Wang, G. An optimization model and modified Harmony Search algorithm for microgrid planning with ESS. Discret. Dyn. Nat. Soc. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y.; Zhang, Y.; Ma, W.; Zhang, C. A hybrid harmony search algorithm with efficient job sequence scheme and variable neighborhood search for the permutation flow shop scheduling problems. Eng. Appl. Artif. Intell. 2017, 65, 178–199. [Google Scholar] [CrossRef]
- Saka, M.P.; Hasançebi, O.; Geem, Z.W. Metaheuristics in structural optimization and discussions on harmony search algorithm. Swarm Evolut. Comput. 2016, 28, 88–97. [Google Scholar] [CrossRef]
- Moon, Y.Y.; Geem, Z.W.; Han, G.T. Vanishing point detection for self-driving car using harmony search algorithm. Swarm Evolut. Comput. 2018, 41, 111–119. [Google Scholar] [CrossRef]
- Kim, Y.K.; Yoon, Y.; Geem, Z.W. A comparison study of harmony search and genetic algorithm for the max-cut problem. Swarm Evolut. Comput. 2019, 44, 130–135. [Google Scholar] [CrossRef]
- Das, S.; Mukhopadhyay, A.; Roy, A.; Abraham, A.; Panigrahi, B.K. Exploratory power of the harmony search algorithm: Analysis and improvements for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 2011, 41, 89–106. [Google Scholar] [CrossRef]
- Pan, Q.-K.; Suganthan, P.N.; Tasgetiren, M.F.; Liang, J.J. A self-adaptive global best harmony search algorithm for continuous optimization problems. Appl. Math. Comput. 2010, 216, 830–848. [Google Scholar] [CrossRef]
- Peraza, C.; Valdez, F.; Garcia, M.; Melin, P.; Castillo, O. A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms 2016, 9, 19. [Google Scholar] [CrossRef]
- Kattan, A.; Abdullah, R. A dynamic self-adaptive harmony search algorithm for continuous optimization problems. Appl. Math. Comput. 2013, 219, 8542–8567. [Google Scholar] [CrossRef]
- Assad, A.; Deep, K.A. Hybrid harmony search and simulated annealing algorithm for continuous optimization. Inform. Sci. 2018, 450, 246–326. [Google Scholar] [CrossRef]
- Zhang, T.; Geem, Z.W. Review of harmony search with respect to algorithm structure. Swarm Evolut. Comput. 2019, 48, 31–43. [Google Scholar] [CrossRef]
- Manjarres, D.; Landa-Torres, I.; Gil-Lopez, S.; Del Ser, J.; Bilbao, M.N.; Salcedo-Sanz, S.; Geem, Z.W. A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 2013, 26, 1818–1831. [Google Scholar] [CrossRef]
- Nasir, M.; Sadollah, A.; Yoon, J.H.; Geem, Z.W. Comparative study of Harmony Search algorithm and its applications in China, Japan and Korea. Appl. Sci. 2020, 10, 3970. [Google Scholar] [CrossRef]
- Fukushima, M. Test Functions for Unconstrained Global Optimization; Springer: New York, NY, USA, 2006; Available online: http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm (accessed on 10 June 2018).
- Tang, K.; Yao, X.; Suganthan, P.N.; MacNish, C.; Chen, Y.P.; Chen, C.M.; Yang, Z. Benchmark Functions for the CEC’2008 Special Session and Competition on Large Scale Global Optimization; China & Nanyang Technological University: Singapore, 2008; Available online: http://www.ntu.edu.sg/home/EPNSugan/ (accessed on 10 June 2018).
- Tang, K.; Li, X.; Suganthan, P.N.; Yang, Z.; Weise, T. Benchmark Functions For The CEC’2010 Special Session And Competition On Large Scale Global Optimization; Technical report; Nature Inspired Computation and Applications Laboratory, USTC, China & Nanyang Technological University: Singapore, 2009; Available online: http://nical.ustc.edu.cn/cec10ss.php (accessed on 10 June 2018).
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Zhang, Q. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 2011, 15, 55–66. [Google Scholar] [CrossRef]
- Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [Google Scholar] [CrossRef]
- Potter, M.A.; Jong, K.A.D. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolut. Comput. 2000, 8, 1–29. [Google Scholar] [CrossRef]
- He, J.; Lin, G. Average convergence rate of evolutionary algorithms. IEEE Trans. Evol. Comput. 2015, 20, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Omidvar, M.; Li, X.; Mei, Y.; Yao, X. Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 2014, 18, 378–393. [Google Scholar] [CrossRef] [Green Version]
- Omidvar, M.N.; Kazimipour, B.; Li, X.; Yao, X. Cbcc3- a contribution-based cooperative co-evolutionary algorithm with improved exploration/exploitation balance. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24 July 2016; Volume 7, pp. 3541–3548. [Google Scholar]
- Omidvar, M.N.; Yang, M.; Mei, Y.; Li, X.; Yao, X. DG2: A faster and more accurate differential grouping for large-scale black-box optimization. IEEE Trans. Evol. Comput. 2017, 21, 929–942. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Peng, H.; Wu, Z.; Chen, J.; Deng, C. A hybrid deep grouping algorithm for large scale global optimization. IEEE Trans. Evol. Comput. 2020. [Google Scholar] [CrossRef]
- Tuo, S.H.; He, H. Solving complex cardinality constrained mean-variance portfolio optimization problems using hybrid HS and TLBO algorithm economic computation and economic cybernetics studies and research. Acad. Econ. Stud. 2018, 52, 231–248. [Google Scholar]
- Tuo, S.H.; Zhang, J.; Yuan, X.; He, Z.; Liu, Y.; Liu, Z. Niche harmony search algorithm for detecting complex disease associated high-order SNP combinations. Sci. Rep. 2017, 7, 11529. [Google Scholar] [CrossRef] [Green Version]
- Tuo, S.H.; Zhang, J.; Yuan, X.; Zhang, Y.; Liu, Z. FHSA-SED: Two-locus model detection for genome-wide association study with harmony search algorithm. PLoS ONE 2016, 11, e0150669. [Google Scholar] [CrossRef] [Green Version]
- Tuo, S.H.; Liu, H.; Chen, H. Multi-population harmony search algorithm for the detection of high-order SNP interactions. Bioinformatics 2020. [Google Scholar] [CrossRef]
Function Name and Formula | Function Graph |
---|---|
Ackley | |
Griewank | |
Levy | |
Michalewics | |
Rastrigin | |
Schwefel 2.26 | |
Algorithm | Function | Best | Mean | Worst | Runtime | Function | Best | Mean | Worst | Runtime |
---|---|---|---|---|---|---|---|---|---|---|
(s) | (s) | |||||||||
HS (Take-all) | Sphere shift | 6.13 × 104 | 6.44 × 104 | 6.69 × 104 | 1.02 × 103 | Rastrigin shift | 1.31 × 103 | 1.35 × 103 | 1.38 × 103 | 1.52 × 103 |
Take-k based HS | 1.28 × 10−1 | 1.32 × 10−1 | 1.36 × 10−1 | 3.77 × 102 | 9.76 × 10−2 | 1.07 × 10−1 | 1.26 × 10−1 | 6.14 × 102 | ||
SaDE | 4.05 × 10−3 | 8.70 × 10−3 | 1.34 × 10−2 | 1.08 × 103 | 5.79 × 103 | 6.97 × 103 | 8.16 × 103 | 2.36 × 103 | ||
CoDE | 2.25 × 10−3 | 4.75 × 10−3 | 7.25 × 10−3 | 5.38 × 102 | 3.59 × 103 | 3.81 × 103 | 4.04 × 103 | 1.08 × 103 | ||
CLPSO | 5.14 × 10−1 | 5.51 × 10−1 | 5.87 × 10−1 | 3.81 × 103 | 4.20 × 102 | 4.56 × 102 | 4.92 × 102 | 4.27 × 103 | ||
Take-k based DIHS | 5.90 × 10−34 | 1.01 × 10−32 | 2.43 × 10−32 | 4.85 × 102 | 0 | 0 | 0 | 1.26 × 103 | ||
HS (Take-all) | Schwefel shift | 5.75 × 101 | 5.81 × 101 | 5.87 × 101 | 1.32 × 103 | Griewank shift | 5.64 × 102 | 5.77 × 102 | 5.91 × 102 | 1.60 × 103 |
Take-k based HS | 4.85 × 101 | 5.13 × 101 | 5.43 × 101 | 3.70 × 102 | 7.32 × 10−3 | 3.23 × 10−2 | 7.10 × 10−2 | 8.08 × 102 | ||
SaDE | 8.04 × 101 | 8.14 × 101 | 8.23 × 101 | 2.15 × 103 | 1.19 × 10−3 | 4.11 × 10−2 | 8.09 × 10−2 | 1.83 × 103 | ||
CoDE | 1.15 × 102 | 1.16 × 102 | 1.17 × 102 | 6.57 × 102 | 3.32 × 10−4 | 9.16 | 1.83 × 101 | 7.50 × 102 | ||
CLPSO | 6.99 × 101 | 7.48 × 101 | 7.97 × 101 | 4.30 × 103 | 2.77 × 10−2 | 2.94 × 10−2 | 3.12 × 10−2 | 4.38 × 103 | ||
Take-k based DIHS | 2.56 × 101 | 2.60 × 101 | 2.64 × 101 | 6.39 × 102 | 2.44 × 10−15 | 2.50 × 10−15 | 2.55 × 10−15 | 8.66 × 102 | ||
HS (Take-all) | Rosenbrock shift | 2.21 × 109 | 2.37 × 109 | 2.48 × 109 | 1.58 × 103 | Ackley shift | 9.23 | 9.4 | 9.62 | 1.65 × 103 |
Take-k based HS | 2.10 × 103 | 2.28 × 103 | 2.62 × 103 | 7.99 × 102 | 1.91 × 10−2 | 1.97 × 10−2 | 2.00 × 10−2 | 9.71 × 102 | ||
SaDE | 4.03 × 103 | 4.42 × 103 | 4.81 × 103 | 1.75 × 103 | 1.58 × 101 | 1.59 × 101 | 1.60 × 101 | 1.86 × 103 | ||
CoDE | 2.84 × 103 | 2.89 × 103 | 2.94 × 103 | 6.18 × 102 | 1.46 × 101 | 1.49 × 101 | 1.53 × 101 | 7.80 × 102 | ||
CLPSO | 5.94 × 103 | 6.26 × 103 | 6.58 × 103 | 4.12 × 103 | 1.35 × 101 | 1.54 × 101 | 1.73 × 101 | 4.43 × 103 | ||
Take-k based DIHS | 1.15 × 103 | 1.15 × 103 | 1.16 × 103 | 7.28 × 102 | 2.31 × 10−13 | 2.31 × 10−13 | 2.31 × 10−13 | 9.82 × 102 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuo, S.; Geem, Z.W.; Yoon, J.H. A New Method for Analyzing the Performance of the Harmony Search Algorithm. Mathematics 2020, 8, 1421. https://doi.org/10.3390/math8091421
Tuo S, Geem ZW, Yoon JH. A New Method for Analyzing the Performance of the Harmony Search Algorithm. Mathematics. 2020; 8(9):1421. https://doi.org/10.3390/math8091421
Chicago/Turabian StyleTuo, Shouheng, Zong Woo Geem, and Jin Hee Yoon. 2020. "A New Method for Analyzing the Performance of the Harmony Search Algorithm" Mathematics 8, no. 9: 1421. https://doi.org/10.3390/math8091421
APA StyleTuo, S., Geem, Z. W., & Yoon, J. H. (2020). A New Method for Analyzing the Performance of the Harmony Search Algorithm. Mathematics, 8(9), 1421. https://doi.org/10.3390/math8091421