Determining When an Algebra Is an Evolution Algebra
Abstract
1. Introduction
2. Characterising Evolution Algebras by Means of Simultaneous Diagonalisation of Matrices by Congruence
2.1. Reviewing the Solution of the SDC Problem
- (i)
- are SDC;
- (ii)
- and there exists satisfying where is diagonal for
2.2. Checking When an Algebra Is an Evolution Algebra
- (i)
- If have maximum pencil rank and with is such that then A is an evolution algebra if and only if each of the matrices are diagonalisable and they pairwise commute.
- (ii)
- If have maximum pencil rank then A is not an evolution algebra.
3. Some Examples and Applications
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Tian, J.P. Evolution Algebras and Their Applications; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1921. [Google Scholar]
- Becerra, J.; Beltrán, M.; Velasco, M.V. Pulse Processes in Networks and Evolution Algebras. Mathematics 2020, 8, 387. [Google Scholar] [CrossRef]
- Cabrera, Y.; Siles, M.; Velasco, M.V. Evolution algebras of arbitrary dimension and their decompositions. Linear Algebra Appl. 2016, 495, 122–162. [Google Scholar] [CrossRef]
- Celorrio, M.E.; Velasco, M.V. Classifying evolution algebras of dimension two and three. Mathematics 2019, 7, 1236. [Google Scholar] [CrossRef]
- Camacho, L.M.; Gómez, J.R.; Omirov, B.A.; Turdibaev, R.M. Some properties of evolution algebras. Bull. Korean Math. Soc. 2013, 50, 1481–1494. [Google Scholar] [CrossRef]
- Camacho, L.M.; Gómez, J.R.; Omirov, B.A.; Turdibaev, R.M. The derivations of some evolution algebras. Linear Multilinear Algebra 2013, 6, 309–322. [Google Scholar] [CrossRef]
- Casas, J.M.; Ladra, M.; Rozikov, U.A. A chain of evolution algebras. Linear Algebra Appl. 2011, 435, 852–870. [Google Scholar] [CrossRef]
- Elduque, A.; Labra, A. On nilpotent evolution algebras. Linear Algebra Appl. 2016, 505, 11–31. [Google Scholar] [CrossRef]
- Hegazi, A.S.; Abdelwahab, H. Nilpotent evolution algebras over arbitrary fields. Linear Algebra Appl. 2015, 486, 345–360. [Google Scholar] [CrossRef]
- Labra, A.; Ladra, M.; Rozikov, U.A. An evolution algebra in population genetics. Linear Algebra Appl. 2014, 45, 348–362. [Google Scholar] [CrossRef]
- Ladra, M.; Omirov, B.A.; Rozikov, U.A. Dibaric and evolution algebras in Biology. Lobachevskii J. Math. 2014, 35, 198–210. [Google Scholar] [CrossRef]
- Mellon, P.; Velasco, M.V. Analytic aspects of evolution algebras. Banach J. Math. Anal. 2019, 13, 113–132. [Google Scholar] [CrossRef]
- Omirov, B.; Rozikov, U.; Velasco, M.V. A class of nilpotent evolution algebras. Commun. Algebra 2019, 47, 1556–1567. [Google Scholar] [CrossRef]
- Rozikov, U.A.; Tian, J.P. Evolution algebras generated by Gibbs measures. Lobachevskii J. Math. 2011, 32, 270–277. [Google Scholar] [CrossRef]
- Rozikov, U.A.; Murodov, S.N. Dynamics of two-dimensional evolution algebras. Lobachevskii J. Math. 2013, 3, 344–358. [Google Scholar] [CrossRef][Green Version]
- Rozikov, U.A.; Velasco, M.V. Discrete-time dynamical system and an evolution algebra of mosquito population. J. Math. Biol. 2019, 78, 1225–1244. [Google Scholar] [CrossRef]
- Velasco, M.V. The Jacobson radical of an evolution algebra. J. Spectr. Theory 2019, 9, 601–634. [Google Scholar] [CrossRef]
- Hiriart-Urruty, J.B. Potpourri of conjectures and open questions in nonlinear analysis and optimization. SIAM Rev. 2007, 49, 255–273. [Google Scholar] [CrossRef]
- Hiriart-Urruty, J.B.; Torki, M. Permanently going back and forth between the “quadratic world” and the “convexity world” in Optimization. Appl. Math. Optim. 2002, 45, 169–184. [Google Scholar] [CrossRef]
- Jiang, R.; Li, D. Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming. SIAM J. Optim. 2016, 26, 1649–1669. [Google Scholar] [CrossRef]
- Belouchrani, A.; Abed-Meraim, K.; Cardoso, J.F.; Moulines, E. A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 1997, 45, 434–444. [Google Scholar] [CrossRef]
- Vollgraf, R.; Obermayer, K. Quadratic optimization for simultaneous matrix diagonalization. IEEE Trans. Signal Process. 2006, 54, 3270–3278. [Google Scholar] [CrossRef]
- Yeredor, A. Blind source separation via the second characteristic function. Signal Process. 2000, 80, 897–902. [Google Scholar] [CrossRef]
- Yeredor, A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Process. 2002, 50, 1545–1553. [Google Scholar] [CrossRef]
- Bustamante, M.D.; Mellon, P.; Velasco, M.V. Solving the problem of simultaneously diagonalisation of complex symmetric matrices via congruence. SIAM J. Matrix Anal. Appl. 2020, 41, 1616–1629. [Google Scholar]
- Pierce, R.S. Associative Algebras; Springer: New York, NY, USA, 1982. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Etherington, I.M.H. XXIII—Genetic Algebras. Proc. R. Soc. Edinb. 1940, 59, 242–258. [Google Scholar] [CrossRef]
- Liubich, Y.I. Mathematical Structures in Population Genetics; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Reed, M. Algebraic structure of genetic inheritance. Bull. Am. Math. Soc. 1997, 34, 107–130. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante, M.D.; Mellon, P.; Velasco, M.V. Determining When an Algebra Is an Evolution Algebra. Mathematics 2020, 8, 1349. https://doi.org/10.3390/math8081349
Bustamante MD, Mellon P, Velasco MV. Determining When an Algebra Is an Evolution Algebra. Mathematics. 2020; 8(8):1349. https://doi.org/10.3390/math8081349
Chicago/Turabian StyleBustamante, Miguel D., Pauline Mellon, and M. Victoria Velasco. 2020. "Determining When an Algebra Is an Evolution Algebra" Mathematics 8, no. 8: 1349. https://doi.org/10.3390/math8081349
APA StyleBustamante, M. D., Mellon, P., & Velasco, M. V. (2020). Determining When an Algebra Is an Evolution Algebra. Mathematics, 8(8), 1349. https://doi.org/10.3390/math8081349