Determining When an Algebra Is an Evolution Algebra
Abstract
:1. Introduction
2. Characterising Evolution Algebras by Means of Simultaneous Diagonalisation of Matrices by Congruence
2.1. Reviewing the Solution of the SDC Problem
- (i)
- are SDC;
- (ii)
- and there exists satisfying where is diagonal for
2.2. Checking When an Algebra Is an Evolution Algebra
- (i)
- If have maximum pencil rank and with is such that then A is an evolution algebra if and only if each of the matrices are diagonalisable and they pairwise commute.
- (ii)
- If have maximum pencil rank then A is not an evolution algebra.
3. Some Examples and Applications
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Tian, J.P. Evolution Algebras and Their Applications; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1921. [Google Scholar]
- Becerra, J.; Beltrán, M.; Velasco, M.V. Pulse Processes in Networks and Evolution Algebras. Mathematics 2020, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, Y.; Siles, M.; Velasco, M.V. Evolution algebras of arbitrary dimension and their decompositions. Linear Algebra Appl. 2016, 495, 122–162. [Google Scholar] [CrossRef]
- Celorrio, M.E.; Velasco, M.V. Classifying evolution algebras of dimension two and three. Mathematics 2019, 7, 1236. [Google Scholar] [CrossRef] [Green Version]
- Camacho, L.M.; Gómez, J.R.; Omirov, B.A.; Turdibaev, R.M. Some properties of evolution algebras. Bull. Korean Math. Soc. 2013, 50, 1481–1494. [Google Scholar] [CrossRef] [Green Version]
- Camacho, L.M.; Gómez, J.R.; Omirov, B.A.; Turdibaev, R.M. The derivations of some evolution algebras. Linear Multilinear Algebra 2013, 6, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Casas, J.M.; Ladra, M.; Rozikov, U.A. A chain of evolution algebras. Linear Algebra Appl. 2011, 435, 852–870. [Google Scholar] [CrossRef] [Green Version]
- Elduque, A.; Labra, A. On nilpotent evolution algebras. Linear Algebra Appl. 2016, 505, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Hegazi, A.S.; Abdelwahab, H. Nilpotent evolution algebras over arbitrary fields. Linear Algebra Appl. 2015, 486, 345–360. [Google Scholar] [CrossRef]
- Labra, A.; Ladra, M.; Rozikov, U.A. An evolution algebra in population genetics. Linear Algebra Appl. 2014, 45, 348–362. [Google Scholar] [CrossRef]
- Ladra, M.; Omirov, B.A.; Rozikov, U.A. Dibaric and evolution algebras in Biology. Lobachevskii J. Math. 2014, 35, 198–210. [Google Scholar] [CrossRef]
- Mellon, P.; Velasco, M.V. Analytic aspects of evolution algebras. Banach J. Math. Anal. 2019, 13, 113–132. [Google Scholar] [CrossRef]
- Omirov, B.; Rozikov, U.; Velasco, M.V. A class of nilpotent evolution algebras. Commun. Algebra 2019, 47, 1556–1567. [Google Scholar] [CrossRef] [Green Version]
- Rozikov, U.A.; Tian, J.P. Evolution algebras generated by Gibbs measures. Lobachevskii J. Math. 2011, 32, 270–277. [Google Scholar] [CrossRef]
- Rozikov, U.A.; Murodov, S.N. Dynamics of two-dimensional evolution algebras. Lobachevskii J. Math. 2013, 3, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Rozikov, U.A.; Velasco, M.V. Discrete-time dynamical system and an evolution algebra of mosquito population. J. Math. Biol. 2019, 78, 1225–1244. [Google Scholar] [CrossRef] [Green Version]
- Velasco, M.V. The Jacobson radical of an evolution algebra. J. Spectr. Theory 2019, 9, 601–634. [Google Scholar] [CrossRef] [Green Version]
- Hiriart-Urruty, J.B. Potpourri of conjectures and open questions in nonlinear analysis and optimization. SIAM Rev. 2007, 49, 255–273. [Google Scholar] [CrossRef]
- Hiriart-Urruty, J.B.; Torki, M. Permanently going back and forth between the “quadratic world” and the “convexity world” in Optimization. Appl. Math. Optim. 2002, 45, 169–184. [Google Scholar] [CrossRef]
- Jiang, R.; Li, D. Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming. SIAM J. Optim. 2016, 26, 1649–1669. [Google Scholar] [CrossRef] [Green Version]
- Belouchrani, A.; Abed-Meraim, K.; Cardoso, J.F.; Moulines, E. A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 1997, 45, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Vollgraf, R.; Obermayer, K. Quadratic optimization for simultaneous matrix diagonalization. IEEE Trans. Signal Process. 2006, 54, 3270–3278. [Google Scholar] [CrossRef]
- Yeredor, A. Blind source separation via the second characteristic function. Signal Process. 2000, 80, 897–902. [Google Scholar] [CrossRef]
- Yeredor, A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Process. 2002, 50, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, M.D.; Mellon, P.; Velasco, M.V. Solving the problem of simultaneously diagonalisation of complex symmetric matrices via congruence. SIAM J. Matrix Anal. Appl. 2020, 41, 1616–1629. [Google Scholar]
- Pierce, R.S. Associative Algebras; Springer: New York, NY, USA, 1982. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Etherington, I.M.H. XXIII—Genetic Algebras. Proc. R. Soc. Edinb. 1940, 59, 242–258. [Google Scholar] [CrossRef]
- Liubich, Y.I. Mathematical Structures in Population Genetics; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Reed, M. Algebraic structure of genetic inheritance. Bull. Am. Math. Soc. 1997, 34, 107–130. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante, M.D.; Mellon, P.; Velasco, M.V. Determining When an Algebra Is an Evolution Algebra. Mathematics 2020, 8, 1349. https://doi.org/10.3390/math8081349
Bustamante MD, Mellon P, Velasco MV. Determining When an Algebra Is an Evolution Algebra. Mathematics. 2020; 8(8):1349. https://doi.org/10.3390/math8081349
Chicago/Turabian StyleBustamante, Miguel D., Pauline Mellon, and M. Victoria Velasco. 2020. "Determining When an Algebra Is an Evolution Algebra" Mathematics 8, no. 8: 1349. https://doi.org/10.3390/math8081349
APA StyleBustamante, M. D., Mellon, P., & Velasco, M. V. (2020). Determining When an Algebra Is an Evolution Algebra. Mathematics, 8(8), 1349. https://doi.org/10.3390/math8081349