Next Article in Journal
Subordination Implications and Coefficient Estimates for Subclasses of Starlike Functions
Next Article in Special Issue
On the Connection Problem for Painlevé Differential Equation in View of Geometric Function Theory
Previous Article in Journal
On Numerical Analysis of Carreau–Yasuda Nanofluid Flow over a Non-Linearly Stretching Sheet under Viscous Dissipation and Chemical Reaction Effects
Previous Article in Special Issue
Starlikness Associated with Cosine Hyperbolic Function
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

q-Generalized Linear Operator on Bounded Functions of Complex Order

by
Rizwan Salim Badar
* and
Khalida Inayat Noor
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(7), 1149; https://doi.org/10.3390/math8071149
Submission received: 16 June 2020 / Revised: 6 July 2020 / Accepted: 9 July 2020 / Published: 14 July 2020
(This article belongs to the Special Issue Geometrical Theory of Analytic Functions)

Abstract

:
This article presents a q-generalized linear operator in Geometric Function Theory (GFT) and investigates its application to classes of analytic bounded functions of complex order S q ( c ; M ) and C q ( c ; M ) where 0 < q < 1 , 0 c C , and M > 1 2 . Integral inclusion of the classes related to the q-Bernardi operator is also proven.

1. Introduction

Quantum calculus or q-calculus is attributed to the great mathematicians L.Euler and C. Jacobi, but it became popular when Albert Einstein used it in quantum mechanics in his paper [1] published in 1905. F.H. Jackson [2,3] introduced and studied the q-derivative and q-integral in a proper way. Later, quantum groups gave the geometrical aspects to q-calculus. It is pertinent to mention that q-calculus can be considered an extension of classical calculus discovered by I. Newton and G.W. Leibniz. In fact, the operators defined as:
d h f ( z ) = f ( z + h ) f ( z ) h
and:
d q f ( z ) = f ( z ) f ( q z ) ( 1 q ) z , 0 < q < 1 ,
where z C and h > 0 are the h-derivative and q-derivative, respectively, where h is Planck’s constant, are related as: q = e i h = e 2 π i h ¯ where h ¯ = h / 2 π . Srivastava [4] applied the concepts of q-calculus by using the basic (or q-) hypergeometric functions in Geometric Function Theory (GFT). Ismail [5] and Agarwal [6] introduced the class of q-starlike functions by using the q-derivative. The q-close-to-convex functions were defined in [7], and Sahoo and Sharma [8] obtained several interesting results for q-close-to-convex functions. Several convolution and fractional calculus q-operators were defined by the researchers, which were reposited by Srivastava in [9]. Darus [10] defined a new differential operator called the q-generalized operator by using q-hypergeometric functions. Let A be the class of functions of the form:
f ( z ) = z + k = 2 a k z k ,
analytic in the open unit disc E = { z : | z | < 1 } .
Let f ( z ) be given by (1) and g ( z ) defined as:
g ( z ) = z + k = 2 b k z k .
The Hadamard product (or convolution) of f and g is defined by:
( f g ) ( z ) = z + k = 2 a k b k z k .
Let f , h be analytic functions. Then, f is subordinate to h, written as f h or f ( z ) h ( z ) , z E , if there exists a Schwartz function ω ( z ) analytic in E with ω ( 0 ) = 0 and ω ( z ) < 1 for z E , such that f ( z ) = h ( ω ( z ) ) . If h is univalent in E, then f h , if and only if f ( 0 ) = h ( 0 ) and f ( E ) h ( E ) .
A sequence b k k = 1 of complex numbers is a subordinating factor if, whenever f ( z ) = k = 1 a k z k , a 1 = 1 is regular, univalent, and convex in E , we have n = 1 b n a n z n f ( z ) , z E [11].
We recall some basic concepts from q-calculus that are used in our discussion and refer to [2,3,12] for more details.
A subset B C is called q-geometric if z q B whenever z B , and it contains all the geometric sequences z q k 0 . In GFT, the q-derivative of f ( z ) is defined as:
d q f ( z ) = f ( z ) f ( q z ) ( 1 q ) z , q ( 0 , 1 ) , ( z B 0 ) ,
and d q f ( 0 ) = f ( 0 ) . For a function g ( z ) = z k , the q-derivative is:
d q g ( z ) = [ k ] z k 1 ,
where k = 1 q k 1 q = 1 + q + q 2 + . . . . + q k 1 .
We note that as q 1 , d q f ( z ) f ( z ) , which is the ordinary derivative. From (1), we deduce that:
d q f ( z ) = 1 + k = 2 [ k ] a k z k .
Let f ( z ) and g ( z ) be defined on a q-geometric set B. Then, for complex numbers a , b , we have:
d q ( a f ( z ) ± b g ( z ) ) = a d q f ( z ) ± b d q g ( z ) .
d q ( f ( z ) g ( z ) ) = f ( q z ) d q g ( z ) + g ( z ) d q f ( z ) .
d q f ( z ) g ( z ) = g ( z ) d q f ( z ) f ( z ) d q g ( z ) g ( z ) g ( q z ) , g ( z ) g ( q z ) 0 .
d q log f ( z ) = ln q 1 1 q d q f ( z ) f ( z ) .
Jackson [2] introduced the q-integral of a function f, given by:
0 z f ( t ) d q t = z ( 1 q ) k = 0 q k f ( q k z ) ,
provided that the series converges.
For any non-negative integer n, the q-number shift factorial is defined as:
[ n ] ! = 1 2 . . . n if n 0 , 1 if n = 0
Let λ R and n N ; the q-generalized Pochhammer symbol is defined as:
λ n = λ λ + 1 λ + 2 . . . . λ + n 1 .
The q-Gamma function is defined for λ > 0 as:
Γ q ( λ + 1 ) = [ λ ] Γ q ( λ ) and Γ q ( 1 ) = 1 .
For complex parameters a i ( 1 i l ) , b j 0 , 1 , 2 , . . . ( 1 j m ) with l m + 1 , the basic q-hypergeometric function is defined as,
l F m ( a 1 , . . . a l ; b 1 , . . . , b m , z ) = k = 0 ( a 1 ) k . . . ( a l ) k ( q ) k ( b 1 ) k . . . ( b m ) k 1 n q n 2 1 + m l z k .
with n 2 = n ( n 1 ) 2 and l , m N 0 = N 0 . Here, the q-shifted factorial is defined for a C as:
a k = 1 a 1 a q . . . 1 a q k 1 if k N , 1 if k = 0 .
Let l = m + 1 , a 1 = q λ + 1 ( λ > 1 ) , a i = q ( 2 i l ) , and b j = q 1 j m , and by using the property q a k = Γ q ( a + k ) 1 q k / Γ q ( a ) , from (2), we get the function,
F q , λ + 1 ( z ) = z + k = 2 Γ q ( λ + k ) k 1 ! Γ q ( λ + 1 ) z k = z + k = 2 λ + 1 k 1 k 1 ! z k , z E .
In [13], the q-Srivastava–Attiya convolution operator is defined as:
G q , a s ( z ) = z + k = 2 1 + a k + a s z k , z E ,
( a C Z 0 ; s C when z < 1 ; Re ( s ) > 1 when z = 1 ) .
Using convolution, the operator D q , a , λ s for λ > 1 is defined as:
D q , a , λ s f ( z ) = J q , a , λ s ( z ) f ( z ) = z + k = 2 k + a 1 + a s λ + 1 k 1 k 1 ! a k z k , z E ,
where:
J q , a , λ s ( z ) = G q , a s ( z ) 1 F q , λ + 1 ( z ) = z + k = 2 k + a 1 + a s λ + 1 k 1 k 1 ! z k .
It is a convergent series with a radius of convergence of one. We observe that D q , a , 0 0 f ( z ) = f ( z ) and D q , 0 , 0 1 f ( z ) = z d q f ( z ) . The operator D q , a , λ s reduces to known linear operators for different values of parameters a , s , and λ as:
(i)
If q 1 , it reduces to the operator D a , λ s discussed by Noor et al. in [14].
(ii)
For s = 0 , it is a q-Ruscheweyh differential operator [15].
(iii)
If s = 1 , λ = 0 , and q 1 , it is an Owa–Srivastava integral operator [16].
(iv)
If s N 0 , a = 1 , λ = 0 , and q 1 , it reduces to the generalized Srivastava–Attiya integral operator [17].
(v)
If s N 0 , a = 0 , λ = 0 , it is a q-Salagean differential operator [18].
(vi)
For s , λ N 0 , and a = 0 , it is the operator defined in [19].
The following identities hold for the operator D q , a , λ s f ( z ) ,
z d q D q , a , λ s f ( z ) = 1 + a q a D q , a , λ s + 1 f ( z ) a q a D q , a , λ s f ( z )
z d q ( D q , a , λ s f ( z ) ) = 1 + λ q λ D q , a , λ + 1 s f ( z ) λ q λ D q , a , λ s f ( z ) .
Let P ( q ) be the class of functions of the form p ( z ) = 1 + c 1 z + c 2 z 2 + . . . . , analytic in E, and satisfying:
p ( z ) 1 1 q 1 1 q , ( z E , q ( 0 , 1 ) ) .
It is known from [20] that p P ( q ) implies p ( z ) 1 + z 1 q z . It follows immediately that Re p ( z ) > 0 , z E .
The classes of bounded q-starlike functions S q ( c , M ) and bounded q-convex functions C q ( c , M ) of complex order c were defined in [21], respectively, as:
S q ( c , M ) = f A : c 1 + z d q f ( z ) f ( z ) c M < M , c C ; M > 1 2 , z E ,
or equivalently,
S q ( c , M ) = f A : z d q f ( z ) f ( z ) 1 + { c ( 1 + m ) m } z 1 m z , c C ; m = 1 1 M ; M > 1 2 .
The class of bounded q-convex functions C q ( c , M ) of complex order c is defined as:
C q ( c , M ) = f A : c 1 + d q ( z d q f ( z ) ) d q f ( z ) c M < M , c C ; M > 1 2 , z E ,
or equivalently,
C q ( c , M ) = f A : d q ( z d q f ( z ) ) d q f ( z ) 1 + { c ( 1 + m ) m } z 1 m z c ; m = 1 1 M ; M > 1 2 .
Using the operator D q , a , λ s f ( z ) , we now define the following new classes S q , a , s , λ ( c , M ) and C q , a , s , λ ( c , M ) as:
S q , a , s , λ ( c , M ) = f A : z ( d q D q , a , λ s ( f ( z ) ) ) D q , a , λ s ( f ( z ) ) 1 + { c ( 1 + m ) m } z 1 m z , z E , 0 < q < 1 , c ; m = 1 1 M ; M > 1 2 .
Special cases:
(i)
If c = 1 , m = 1 , and q 1 , then S q , a , s , λ ( c , M ) reduces to class S s ( a , λ ) discussed in [22].
(ii)
If c = 1 , s = 0 , λ = 0 , m = q , then S q , a , s , λ ( c , M ) reduces to class S q introduced by Noor et al. [23].
(iii)
If s = 0 , c = m 1 + m ( 1 < m < 0 ) , m = q , then S q , a , s , λ ( c , M ) reduces to class S T q studied by Noor [24].
(iv)
If s = 0 , λ = 0 , c = a e i β cos β ( a C , β < π 2 ) , and q 1 , then S q , a , s , λ ( c , M ) becomes special cases of Janowski β -spiral like functions of complex order S β ( A , B , a ) discussed in [25].
(v)
If s N 0 , λ = 0 , a = 0 , and q 1 , then S q , a , s , λ ( c , M ) reduces to class H n ( c , M ) discussed by Aouf et al. in [26].
(vi)
If 0 < c 1 , 1 < m < 0 , and q 1 , then S q , a , s , λ ( c , M ) becomes a special case of the class S a , λ s ( η , A , B ) with η = 0 discussed in [19].
A function f A is in the class S q , a , s , λ ( c , M ) if and only if:
z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) 1 A B z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) < 1 ,
where A = c ( 1 + m ) m and B = m .
The class C q , a , s , λ ( c , M ) is defined as:
C q , a , s , λ ( c , M ) = f A : d q ( z d q ( D q , a , λ s f ( z ) ) d q ( D q , a , λ s f ( z ) ) 1 + { c ( 1 + m ) m } z 1 m z , z E , 0 < q < 1 , c C ; m = 1 1 M ; M > 1 2 .
It is easy to see that f C q , a , s , λ ( c , M ) z d q f S q , a , s , λ ( c , M ) . In order to develop results for the classes S q , a , s , λ ( c , M ) and C q , a , s , λ ( c , M ) , we need the following:
Lemma 1
([27]). Let β and γ be complex numbers with β 0 , and let h ( z ) be regular in E with h ( 0 ) = 1 and Re [ β h ( z ) + γ ] > 0 . If p ( z ) = 1 + p 1 z + p 2 z 2 + . . . is analytic in E , then p ( z ) + z d q p ( z ) β p ( z ) + γ h ( z ) p ( z ) h ( z ) .
Lemma 2
([11]). The sequence b n n = 1 is a subordinating factor sequence if and only if:
Re 1 + 2 k = 1 b k z k > 0 , z E .

2. Properties of Classes S q , a , s , λ ( c , M ) and C q , a , s , λ ( c , M )

We start the section with the necessary and sufficient condition for a function to be in the class S q , a , s , λ ( c , M ) .
Theorem 1.
Let f A . Then, f S q , a , s , λ ( c , M ) if and only if:
k = 2 k 1 + c ( 1 + m ) + m ( k 1 ) λ + 1 k 1 k 1 ! k + a 1 + a s a k < c ( 1 + m ) ,
where m = 1 1 M , ( M > 1 2 ) .
Proof. 
Let us assume first that Inequality (6) holds. To show f S q , a , s , λ ( c , M ) , we need to prove Inequality (5).
z ( d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) 1 A B z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) = k = 2 k + a 1 + a s . λ + 1 k 1 k 1 ! ( k 1 ) a k z k ( A B ) z + k = 2 A B k 1 + a k + a s . λ + 1 k 1 k 1 ! a k z k k = 2 k + a 1 + a s . λ + 1 k 1 k 1 ! ( k 1 ) a k A B k = 2 A B k k + a 1 + a s . λ + 1 k 1 k 1 ! a k k = 2 k + a 1 + a s . λ + 1 k 1 k 1 ! ( k 1 ) a k c ( 1 + m ) k = 2 c ( 1 + m ) + m ( k 1 ) λ + 1 k 1 k 1 ! k + a 1 + a s a k < 1 .
Hence, f S q , a , s , λ ( c , M ) by using Inequality (6). Conversely, let f S q , a , s , λ ( c , M ) be of the form (1), then:
z ( d q ( D q , a , λ s f ( z ) ) ) D q , a , λ s ( f ( z ) ) 1 A B z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) = k = 2 k + a 1 + a s . λ + 1 k 1 k 1 ! ( k 1 ) a k z k ( A B ) z + k = 2 A B k k + a 1 + a s . λ + 1 k 1 k 1 ! a k z k .
Since Re z z , , we have:
Re k = 2 k + a 1 + a s . λ + 1 k 1 k 1 ! ( k 1 ) a k z k ( A B ) z + k = 2 A B k k + a 1 + a s . λ + 1 k 1 k 1 ! a k z k < 1 .
Now, we choose values of z on the real axis such that z d q ( D q , a , λ s f ( z ) ) / D q , a , λ s f ( z ) is real. Letting z 1 through real values, after some calculations, we obtain Inequality (6). □
Remark 1.
(i) If q 1 , s N 0 , a = 0 , and λ = 0 , the above result reduces to the sufficient condition for f ( z ) to be in class H n ( c , M ) ( c C , M > 1 2 ) discussed in [26]. (ii) If c = 1 α ( α [ 0 , 1 ) ) , m = 0 , λ = 0 , and q 1 , the above result reduces to the sufficient condition for f ( z ) to be in class S s , a α discussed in [28].
Theorem 2.
Let f i S q , a , s , λ ( c , M ) having the form:
f i ( z ) = z + k = 2 a k , i z k , for i = 1 , 2 , 3 , . . , l .
Then, F S q , a , s , λ ( c , M ) , where F ( z ) = i = 1 l c i f i ( z ) with i = 1 ł c i = 1 .
Proof. 
From Theorem 1, we can write:
k = 2 k 1 + b ( 1 + m ) + m ( k 1 ) λ + 1 k 1 k 1 ! k + a 1 + a s b ( 1 + m ) a k , i < 1 .
Therefore:
F ( z ) = i = 1 l c i z + k = 2 a k , i z k = z + k = 2 i = 1 l c i a k , i z k ;
where however due to (7), we have:
k = 2 k 1 + b ( 1 + m ) + m ( k 1 ) λ + 1 k 1 k 1 ! k + a 1 + a s b ( 1 + m ) i = 2 l c i a k , i = i = 2 l k 1 + b ( 1 + m ) + m ( k 1 ) λ + 1 k 1 k 1 ! k + a 1 + a s b ( 1 + m ) c i 1 ;
Therefore, F S q , a , s , λ ( c , M ) .  □
Theorem 3.
Let f i with i = 1 , 2 , . . . , ν belong to the class S q , a , s , λ ( c , M ) . The arithmetic mean h of f i is given by:
h ( z ) = 1 v i = 1 v f i ( z )
belonging to class S q , a , s , λ ( c , M ) .
Proof. 
From (8), we can write:
h ( z ) = 1 v i = 1 v z + k = 2 a k , i z k = z + k = 2 1 v i = 1 v a k , i z k .
Since f i S q , a , s , λ ( c , M ) for every i = 1 , 2 , . . . , v , using (6) and (9), we have:
k = 2 k 1 + b ( 1 + m ) + m ( k 1 ) λ + 1 k 1 k 1 ! k + a 1 + a s 1 v i = 1 v a k , i = 1 v i = 1 v k = 2 k 1 + b ( 1 + m ) + m ( k 1 ) λ + 1 k 1 k 1 ! k + a 1 + a s a k , i 1 v i = 1 v b ( 1 + m ) = b ( 1 + m ) ,
and this completes the proof.  □
Now, we give the subordination relation for the functions in class S q , a , s , λ ( c , M ) by using the subordination theorem.
Theorem 4.
Let m = 1 1 M ( M > 1 2 ) . Furthermore, c 0 with Re ( c ) > m 2 ( 1 + m ) when m > 0 and Re ( c ) < m 2 ( 1 + m ) when m < 0 and λ 0 . If f S q , a , s , λ ( c , M ) , then:
{ q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) 2 [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] ( f g ) ( z ) g ( z )
where g ( z ) is a convex function in E, C λ , k = λ + 1 k 1 k 1 ! , B s , a ( k ) = k + a 1 + a s , and:
Re f ( z ) > 1 ( 1 + m ) c { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) .
The constant { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) 2 [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] is the best estimate.
Proof. 
Let f ( z ) S q , a , s , λ ( c , M ) and g ( z ) = z + k = 2 c k z k . Then:
{ q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) 2 [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] ( f g ) ( z ) = { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) 2 [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] z + k = 2 a k c k z k .
Thus, (10) holds true if:
{ q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) 2 [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] a k k = 1
is a subordinating factor sequence with a 1 = 1 . From Lemma 2, it suffices to show:
Re 1 + k = 1 { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] a k z k > 0 .
Now, as k 1 + c ( 1 + m ) + m ( k 1 ) C λ , k B s , a ( k ) is an increasing function of k ( k 2 ) , we have:
Re 1 + k = 1 { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] a k z k = Re 1 + { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] z + + k = 2 { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) a k z k [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] 1 { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] r k = 2 { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) a k r k [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] > 1 { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] r ( 1 + m ) c [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] r > 0 . z = r < 1
Hence, (14) holds true in E, and the subordination result (10) is affirmed by Theorem 4. The inequality (11) follows by taking g ( z ) = z 1 z = k = 1 z k in (10).
Let us consider the function:
ϕ ( z ) = z c ( 1 + m ) [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] z 2 ( z E )
which is a member of S q , a , s , λ ( c , M ) . Then. by using (10), we have:
{ q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) 2 [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] ϕ ( z ) z 1 z .
It is easily verified that:
min Re { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) 2 [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] ϕ ( z ) = 1 2 z E ,
then the constant { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) 2 [ { q + c ( 1 + m ) + m q } C λ , 2 B s , a ( 2 ) + c ( 1 + m ) ] cannot be replaced by a larger one. □
Remark 2.
If s N 0 , a = 0 , λ = 0 , and q 1 , Theorem 4 reduces to the subordination result proven in [29].
Now, we discuss the inclusion results pertaining to classes S q , a , s , λ ( c , M ) and C q , a , s , λ ( c , M ) in reference to parameters s and λ .
Theorem 5.
For any complex number s, S q , a , s + 1 , λ ( c , M ) S q , a , s , λ ( c , M ) if Re ( 1 + { c ( 1 + m ) m } z 1 m z ) > 1 q a 1 ( 1 q ) 1 cos ( a 2 ln q ) where a = a 1 + i a 2 .
Proof. 
Let f S q , a , s + 1 , λ ( c , M ) , then:
z d q ( D q , a , λ s + 1 f ( z ) ) D q , a , λ s + 1 f ( z ) 1 + { c ( 1 + m ) m } z 1 m z ,
Let:
h ( z ) = 1 + { c ( 1 + m ) m } z 1 m z
and:
r ( z ) = z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) .
We will show:
r ( z ) h ( z ) ,
which would prove S q , a , s , λ ( c , M ) S q , a , s + 1 , λ ( c , M ) . From the identity relation (3), after a few calculations, we have:
z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) = 1 + a q a . D q , a , λ s + 1 f ( z ) D q , a , λ s f ( z ) a q a .
After some calculations, we have:
D q , a , λ s + 1 f ( z ) D q , a , λ s f ( z ) = 1 1 + a q a z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) + a = 1 1 + a q a r ( z ) + a .
Applying logarithmic q-differentiation, we have:
z d q ( D q , a , λ s + 1 f ( z ) ) D q , a , λ s + 1 f ( z ) = r ( z ) + z d q r ( z ) r ( z ) + q a a .
From (15) and (16), we have:
r ( z ) + z [ d q r ( z ) ] r ( z ) + q a a 1 + { c ( 1 + m ) m } z 1 m z .
If Re ( h ( z ) ) > 1 q a 1 ( 1 q ) 1 cos ( a 2 ln q ) , then from Lemma 1, it implies:
r ( z ) h ( z ) ,
which implies f ( z ) S q , a , s , λ ( c , M ) . Therefore, S q , a , s , λ ( c , M ) S q , a , s + 1 , λ ( c , M ) .  □
Theorem 6.
For any complex number s, C q , a , s + 1 , λ ( c , M ) C q , a , s , λ ( c , M ) if Re ( 1 + { c ( 1 + m ) m } z 1 m z ) > 1 q a 1 ( 1 q ) 1 cos ( a 2 ln q ) where a = a 1 + i a 2 .
Proof. 
It is obvious from the fact f C q , a , s , λ ( c , M ) z d q f S q , a , s , λ ( c , M ) .  □
Theorem 7.
For any complex number s, S q , a , s , λ + 1 ( c , M ) S q , a , s , λ ( c , M ) if Re ( 1 + { c ( 1 + m ) m } z 1 m z ) > 1 q λ 1 q , λ > 1 .
Proof. 
Let f S q , a , s , λ + 1 ( c , M ) , then:
z d q ( D q , a , λ + 1 s f ( z ) ) D q , a , λ + 1 s f ( z ) 1 + { c ( 1 + m ) m } z 1 m z .
Consider:
h ( z ) = 1 + { c ( 1 + m ) m } z 1 m z
and:
q ( z ) = z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) .
We will show:
q ( z ) h ( z ) ,
which would conveniently prove S q , a , s , λ + 1 ( c , M ) S q , a , s , λ ( c , M ) . From the identity relation (4), after a few calculations, we have:
z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) = 1 + λ q λ D q , a , λ + 1 s f ( z ) D q , a , λ s f ( z ) λ q λ .
After some calculations, we have:
D q , a , λ + 1 s f ( z ) D q , a , λ s f ( z ) = 1 1 + λ q a . z d q ( D q , a , λ s f ( z ) ) D q , a , λ s f ( z ) + λ = 1 1 + λ q λ q ( z ) + λ .
Applying logarithmic q-differentiation, we have:
z d q ( D q , a , λ + 1 s f ( z ) ) D q , a , λ + 1 s f ( z ) = q ( z ) + z d q q ( z ) q ( z ) + q λ λ
From (17) and (18), we have:
q ( z ) + z [ d q q ( z ) ] q ( z ) + q λ λ 1 + { c ( 1 + m ) m } z 1 m z .
If Re ( h ( z ) ) > 1 q λ 1 q for any value of λ > 1 , so by Lemma 1, we have q ( z ) h ( z ) , which implies f ( z ) S q , a , s , λ ( c , M ) . Therefore, S q , a , s , λ + 1 ( c , M ) S q , a , s , λ ( c , M ) .  □
Remark 3.
If we consider q 1 with Re a 0 , c = 1 , m = 1 in Theorem 5 and λ 0 , c = 1 , m = 1 in Theorem 7, we obtain the special cases of the inclusion results, Theorems 2.4 and 2.5 in [19].
In [30], the q-Bernardi integral operator L b f ( z ) is defined as:
L b f ( z ) = 1 + b z b 0 z t b 1 f ( t ) d q t = z + k = 2 1 + b k + b a k z k , b = 1 , 2 , 3 , . . . .
Now, we apply the generalized operator D q , a , λ s on L b f ( z ) as:
D q , a , λ s ( L b f ( z ) ) = z + k = 2 k + a 1 + a s . λ + 1 k 1 k 1 ! 1 + b k + b a k z k .
The identity relation of D q , a , λ s ( L b f ( z ) ) is given as:
z d q D q , a , λ s { L b f ( z ) } = 1 + b q b D q , a , λ s f ( z ) b q b D q , a , λ s { L b f ( z ) } .
The following theorems are the integral inclusions of the classes S q , a , s , λ ( c , M ) and C q , a , s , λ ( c , M ) with respect to the q-Bernardi integral operator.
Theorem 8.
If f ( z ) S q , a , s , λ ( c , M ) then L b f ( z ) S q , a , s , λ ( c , M ) if Re ( 1 + { c ( 1 + m ) m } z 1 m z ) > 1 q b 1 q for any complex number s .
Proof. 
Let g ( z ) S q , a , s , λ ( c , M ) , then:
z d q ( D q , a , λ s g ( z ) ) D q , a , λ s g ( z ) 1 + { c ( 1 + m ) m } z 1 m z .
Consider:
h ( z ) = 1 + { c ( 1 + m ) m } z 1 m z
and:
u ( z ) = z d q ( D q , a , λ s L b g ( z ) ) D q , a , λ s L b g ( z ) .
We will show:
u ( z ) h ( z ) ,
which would prove L b g ( z ) S q , a , s , λ ( c , M ) . From the identity relation (19), after some calculations, we have:
z d q ( D q , a , λ s L b g ( z ) ) D q , a , λ s L b g ( z ) = 1 + b q b D q , a , λ s g ( z ) ( D q , a , λ s L b g ( z ) ) b q b .
After some calculations, we have:
D q , a , λ s g ( z ) D q , a , λ s L b g ( z ) = 1 1 + b q b . z d q ( D q , a , λ s L b g ( z ) ) D q , a , λ s L b g ( z ) + b
Applying logarithmic q-differentiation, we have:
z d q ( D q , a , λ s g ( z ) ) D q , a , λ s g ( z ) = u ( z ) + z [ d q u ( z ) ] u ( z ) + q b b
From (20) and (21), we have:
u ( z ) + z [ d q u ( z ) ] u ( z ) + q b b 1 + { c ( 1 + m ) m } z 1 m z
If Re ( h ( z ) ) > 1 q b 1 q , so by Lemma 1, we have u ( z ) h ( z ) , which implies L b g ( z ) S q , a , s , λ ( c , M ) .  □
Theorem 9.
If f ( z ) C q , a , s , λ ( c , M ) , then L b f ( z ) C q , a , s , λ ( c , M ) for any complex number s .
Proof. 
It is an immediate consequence of the fact C q , a , s , λ ( c , M ) z d q f S q , a , s , λ ( c , M ) .  □

Author Contributions

Conceptualization: K.I.N.; formal analysis: R.S.B. and K.I.N.; investigation: R.S.B. and K.I.N.; methodology: R.S.B. and K.I.N.; supervision: K.I.N.; validation: R.S.B.; writing, original draft: R.S.B. All authors read and agreed to the published version of the manuscript.

Funding

The authors received no funding for this research.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Einstein, A. Concerning on heuristic point of view toward the emission and transformation of light. Ann. Phys. 1905, 17, 132–148. [Google Scholar] [CrossRef]
  2. Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  3. Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
  4. Srivastava, H.M. Univalent functions, fractional calculus and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
  5. Ismail, M.E.H.; Markes, E.; Styer, D. A generalization of starlike functions. Complex Var. 1990, 14, 77–84. [Google Scholar] [CrossRef]
  6. Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order alpha. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef] [Green Version]
  7. Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operator. Math. Scand. 2007, 109, 55–70. [Google Scholar] [CrossRef] [Green Version]
  8. Sahoo, S.K.; Sharma, N.L. On a generalization of close-to-convex functions. Ann. Polon. Math. 2015, 113, 93–108. [Google Scholar] [CrossRef] [Green Version]
  9. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
  10. Mohammad, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesnik 2013, 65, 454–465. [Google Scholar]
  11. Wilf, H.S. Subordinating factor sequence for convex maps of the unit circle. Proc. Am. Math. Soc. 1962, 12, 689–693. [Google Scholar] [CrossRef]
  12. Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2012. [Google Scholar]
  13. Ali, S.; Noor, K.I. Study on the q-analogue of a certain family of linear operators. Turkish J. Math. 2019, 43, 2707–2714. [Google Scholar]
  14. Noor, K.I.; Bukhari, S.Z.H. Some subclasses of analytic and spiral-like functions of complex order involving the Srivastava-Attiya integral operator. Integtral Transforms Spec. Funct. 2010, 21, 907–916. [Google Scholar] [CrossRef]
  15. Kanas, S.; Răducanu, D. Some classes of analytical functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
  16. Owa, S.; Srivastava, H.M. Some applications of generalized Libera integral operator. Proc. Japan Acad. Ser. A. Math. Sci. 1986, 62, 125–128. [Google Scholar] [CrossRef]
  17. Wang, Z.G.; Li, Q.G.; Jiang, Y.P. Certain subclasses of multivalent analytic functions involving generalized Srivastava-Attiya operator. Integtral Transforms Spec. Funct. 2010, 21, 221–234. [Google Scholar] [CrossRef]
  18. Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
  19. Al-Shaqsi, K.; Darus, M. A multiplier transformation defined by convolution involving nth order polylogarithm functions. Int. Math. Forum 2009, 4, 1823–1837. [Google Scholar]
  20. Çetinkaya, A.; Polatoğlu, Y. q-Harmonic mappings for which analytic part is q-convex functions of complex order. Hacet. J. Math. Stat. 2018, 47, 813–820. [Google Scholar] [CrossRef] [Green Version]
  21. Aouf, M.K.; Seoudy, T.M. Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative. RACSAM 2019, 113, 1279–1288. [Google Scholar] [CrossRef]
  22. Bukhari, S.Z.H.; Noor, K.I.; Malik, B. Some applications of generalized Srivastava-Attiya integral operator. Iran. J. Sci. Technol Trans. A Sci. 2018, 42, 2251–2257. [Google Scholar] [CrossRef]
  23. Noor, K.I.; Riaz, S. Generalized q-starlike functions. Studia Sci. Math. Hungar. 2017, 54, 509–522. [Google Scholar] [CrossRef]
  24. Noor, K.I. Some classes analytic functions associated with q-Ruscheweyh differential operator. Facta Univ. Ser. Math. Inform. 2018, 33, 531–538. [Google Scholar]
  25. Polatoğlu, Y.; Şen, A. Some results on subclasses of Janowski -spiral like functions of complex order. Gen. Math. 2007, 15, 88–97. [Google Scholar]
  26. Aouf, M.K.; Darwish, H.E.; Attiya, A.A. On a class of certain analytic functions of complex order. Indian J. Pure Appl. Math. 2001, 32, 1443–1452. [Google Scholar]
  27. Shamsan, H.; Latha, S. On generalized bounded Mocanu variation related to q-derivative and conic regions. Ann. Pure Appl. Math. 2018, 17, 67–83. [Google Scholar] [CrossRef]
  28. Răducanu, D.; Srivastava, H.M. A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function. Integtral Transforms Spec. Funct. 2007, 18, 933–943. [Google Scholar] [CrossRef]
  29. Güney, H.O.; Attiya, A.A. A subordination result with Salagean-type certain analytic functions of complex order. Bull. Belg. Math. Soc. 2011, 18, 253–258. [Google Scholar] [CrossRef]
  30. Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi linear operator. TMWS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]

Share and Cite

MDPI and ACS Style

Badar, R.S.; Noor, K.I. q-Generalized Linear Operator on Bounded Functions of Complex Order. Mathematics 2020, 8, 1149. https://doi.org/10.3390/math8071149

AMA Style

Badar RS, Noor KI. q-Generalized Linear Operator on Bounded Functions of Complex Order. Mathematics. 2020; 8(7):1149. https://doi.org/10.3390/math8071149

Chicago/Turabian Style

Badar, Rizwan Salim, and Khalida Inayat Noor. 2020. "q-Generalized Linear Operator on Bounded Functions of Complex Order" Mathematics 8, no. 7: 1149. https://doi.org/10.3390/math8071149

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop