A p-Ideal in BCI-Algebras Based on Multipolar Intuitionistic Fuzzy Sets
Abstract
:1. Introduction
2. Preliminaries
- (I)
- (II)
- (III)
- (IV)
- ,
- (V)
- a subalgebra of U if for all
- an ideal of U if it satisfies:
3. k-Polar Intuitionistic Fuzzy p-Ideals
- (i)
- is a k-pIF p-ideal of U.
- (ii)
- The k-polar upper and lower level sets and are p-ideals of U for all with .
- (i)
- is a k-pIF p-ideal of U.
- (ii)
- The sets and are p-ideals of U for all with .
4. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iséki, K. An algebra related with a propositional calculus. Proc. Jpn. Acad. 1966, 42, 26–29. [Google Scholar] [CrossRef]
- Huang, Y. BCI-Algebra; Science Press: Beijing, China, 2006. [Google Scholar]
- Meng, J.; Jun, Y.B. BCK-Algebras; Kyungmoonsa Co.: Seoul, Korea, 1994. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Repr. Int. Bioautomation 2016, 20, S1–S6. [Google Scholar]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Ma, S.; Wang, X. m-polar fuzzy sets: An extension of bipolar fuzzy sets. Sci. World J. 2014, 2014, 416530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Masarwah, A.; Ahmad, A.G. m-polar fuzzy ideals of BCK/BCI-algebras. J. King Saud Univ. Sci. 2019, 31, 1220–1226. [Google Scholar] [CrossRef]
- Mohseni Takallo, M.; Ahn, S.S.; Borzooei, R.A.; Jun, Y.B. Multipolar fuzzy p-ideals of BCI-algebras. Mathematics 2019, 7, 1094. [Google Scholar] [CrossRef] [Green Version]
- Al-Masarwah, A.; Ahmad, A.G. m-polar (α,β)-fuzzy ideals in BCK/BCI-algebras. Symmetry 2019, 11, 44. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Sarwar, M. New applications of m-polar fuzzy competition graphs. New Math. Nat. Comput. 2018, 14, 249–276. [Google Scholar] [CrossRef]
- Akram, M.; Adeel, A. m-polar fuzzy graphs and m-polar fuzzy line graphs. J. Discret. Math. Sci. Cryptogr. 2017, 20, 1597–1617. [Google Scholar] [CrossRef]
- Akram, M.; Waseem, N.; Davvaz, B. Certain types of domination in m-polar fuzzy graphs. J. Mult. Valued Log. Soft Comput. 2017, 29, 619–646. [Google Scholar]
- Sarwar, M.; Akram, M. Representation of graphs using m-polar fuzzy environment. Ital. J. Pure Appl. Math. 2017, 38, 291–312. [Google Scholar]
- Akram, M.; Waseem, N.; Liu, P. Novel approach in decision making with m-polar fuzzy ELECTRE-I. Int. J. Fuzzy Syst. 2019, 21, 1117–1129. [Google Scholar] [CrossRef]
- Akram, M.; Ali, G.; Alshehri, N.O. A New Multi-Attribute Decision-Making Method Based on m-Polar Fuzzy Soft Rough Sets. Symmetry 2017, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Adeel, A.; Akram, M.; Koam, A.N.A. Group decision-making based on m-polar fuzzy linguistic TOPSIS method. Symmetry 2019, 11, 735. [Google Scholar] [CrossRef] [Green Version]
- Adeel, A.; Akram, M.; Ahmed, I.; Nazar, K. Novel m-polar fuzzy linguistic ELECTRE-I method for group decision-making. Symmetry 2019, 11, 471. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.T.; Song, S.Z.; Jun, Y.B. Multipolar intuitionistic fuzzy set with finite degree and its application in BCK/BCI-algebras. Mathematics 2020, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Hao, J.; Bhatti, S.A. On p-ideals of a BCI-algebra. Punjab Univ. J. Math. (Lahore) 1994, 27, 121–128. [Google Scholar]
∗ | 0 | x | a | b |
---|---|---|---|---|
0 | 0 | x | a | b |
x | x | 0 | b | a |
a | a | b | 0 | x |
b | b | a | x | 0 |
∗ | 0 | x | b | c | d |
---|---|---|---|---|---|
0 | 0 | 0 | d | c | b |
x | x | 0 | d | c | b |
b | b | b | 0 | d | c |
c | c | c | b | 0 | d |
d | d | d | c | b | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-G.; Fozouni, M.; Hur, K.; Jun, Y.B. A p-Ideal in BCI-Algebras Based on Multipolar Intuitionistic Fuzzy Sets. Mathematics 2020, 8, 993. https://doi.org/10.3390/math8060993
Lee J-G, Fozouni M, Hur K, Jun YB. A p-Ideal in BCI-Algebras Based on Multipolar Intuitionistic Fuzzy Sets. Mathematics. 2020; 8(6):993. https://doi.org/10.3390/math8060993
Chicago/Turabian StyleLee, Jeong-Gon, Mohammad Fozouni, Kul Hur, and Young Bae Jun. 2020. "A p-Ideal in BCI-Algebras Based on Multipolar Intuitionistic Fuzzy Sets" Mathematics 8, no. 6: 993. https://doi.org/10.3390/math8060993
APA StyleLee, J.-G., Fozouni, M., Hur, K., & Jun, Y. B. (2020). A p-Ideal in BCI-Algebras Based on Multipolar Intuitionistic Fuzzy Sets. Mathematics, 8(6), 993. https://doi.org/10.3390/math8060993