Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = multipolar intuitionistic fuzzy set with finite degree k

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 292 KB  
Article
Multipolar Intuitionistic Fuzzy Hyper BCK-Ideals in Hyper BCK-Algebras
by Young Joo Seo, Hee Sik Kim, Young Bae Jun and Sun Shin Ahn
Mathematics 2020, 8(8), 1373; https://doi.org/10.3390/math8081373 - 16 Aug 2020
Cited by 6 | Viewed by 2670
Abstract
In 2020, Kang et al. introduced the concept of a multipolar intuitionistic fuzzy set of finite degree, which is a generalization of a k-polar fuzzy set, and applied it to a BCK/BCI-algebra. The specific purpose of this study was to apply the [...] Read more.
In 2020, Kang et al. introduced the concept of a multipolar intuitionistic fuzzy set of finite degree, which is a generalization of a k-polar fuzzy set, and applied it to a BCK/BCI-algebra. The specific purpose of this study was to apply the concept of a multipolar intuitionistic fuzzy set of finite degree to a hyper BCK-algebra. The notions of the k-polar intuitionistic fuzzy hyper BCK-ideal, the k-polar intuitionistic fuzzy weak hyper BCK-ideal, the k-polar intuitionistic fuzzy s-weak hyper BCK-ideal, the k-polar intuitionistic fuzzy strong hyper BCK-ideal and the k-polar intuitionistic fuzzy reflexive hyper BCK-ideal are introduced herein, and their relations and properties are investigated. These concepts are discussed in connection with the k-polar lower level set and the k-polar upper level set. Full article
(This article belongs to the Special Issue General Algebraic Structures 2020)
14 pages, 808 KB  
Article
A p-Ideal in BCI-Algebras Based on Multipolar Intuitionistic Fuzzy Sets
by Jeong-Gon Lee, Mohammad Fozouni, Kul Hur and Young Bae Jun
Mathematics 2020, 8(6), 993; https://doi.org/10.3390/math8060993 - 17 Jun 2020
Cited by 3 | Viewed by 2111
Abstract
In 2020, Kang, Song and Jun introduced the notion of multipolar intuitionistic fuzzy set with finite degree, which is a generalization of intuitionistic fuzzy set, and they applied it to BCK/BCI-algebras. In this paper, we used this notion to study p-ideals of [...] Read more.
In 2020, Kang, Song and Jun introduced the notion of multipolar intuitionistic fuzzy set with finite degree, which is a generalization of intuitionistic fuzzy set, and they applied it to BCK/BCI-algebras. In this paper, we used this notion to study p-ideals of BCI-algebras. The notion of k-polar intuitionistic fuzzy p-ideals in BCI-algebras is introduced, and several properties were investigated. An example to illustrate the k-polar intuitionistic fuzzy p-ideal is given. The relationship between k-polar intuitionistic fuzzy ideal and k-polar intuitionistic fuzzy p-ideal is displayed. A k-polar intuitionistic fuzzy p-ideal is found to be k-polar intuitionistic fuzzy ideal, and an example to show that the converse is not true is provided. The notions of p-ideals and k-polar ( , ) -fuzzy p-ideal in BCI-algebras are used to study the characterization of k-polar intuitionistic p-ideal. The concept of normal k-polar intuitionistic fuzzy p-ideal is introduced, and its characterization is discussed. The process of eliciting normal k-polar intuitionistic fuzzy p-ideal using k-polar intuitionistic fuzzy p-ideal is provided. Full article
(This article belongs to the Special Issue Intuitionistic Fuzzy Sets and Applications)
16 pages, 796 KB  
Article
Multipolar Intuitionistic Fuzzy Set with Finite Degree and Its Application in BCK/BCI-Algebras
by Kyung Tae Kang, Seok-Zun Song and Young Bae Jun
Mathematics 2020, 8(2), 177; https://doi.org/10.3390/math8020177 - 2 Feb 2020
Cited by 13 | Viewed by 2586
Abstract
When events occur in everyday life, it is sometimes advantageous to approach them in two directions to find a solution for them. As a mathematical tool to handle these things, we can consider the intuitionistic fuzzy set. However, when events are complex and [...] Read more.
When events occur in everyday life, it is sometimes advantageous to approach them in two directions to find a solution for them. As a mathematical tool to handle these things, we can consider the intuitionistic fuzzy set. However, when events are complex and the key to a solution cannot be easily found, we feel the need to approach them for hours and from various directions. As mathematicians, we wish we had the mathematical tools that apply to these processes. If these mathematical tools were developed, we would be able to apply them to algebra, topology, graph theory, etc., from a close point of view, and we would be able to apply these research results to decision-making and/or coding theory, etc., from a distant point of view. In light of this view, the purpose of this study is to introduce the notion of a multipolar intuitionistic fuzzy set with finite degree (briefly, k-polar intuitionistic fuzzy set), and to apply it to algebraic structure, in particular, a BCK/BCI-algebra. The notions of a k-polar intuitionistic fuzzy subalgebra and a (closed) k-polar intuitionistic fuzzy ideal in a BCK/BCI-algebra are introduced, and related properties are investigated. Relations between a k-polar intuitionistic fuzzy subalgebra and a k-polar intuitionistic fuzzy ideal are discussed. Characterizations of a k-polar intuitionistic fuzzy subalgebra/ideal are provided, and conditions for a k-polar intuitionistic fuzzy subalgebra to be a k-polar intuitionistic fuzzy ideal are provided. In a BCI-algebra, relations between a k-polar intuitionistic fuzzy ideal and a closed k-polar intuitionistic fuzzy ideal are discussed. A characterization of a closed k-polar intuitionistic fuzzy ideal is considered, and conditions for a k-polar intuitionistic fuzzy ideal to be closed are provided. Full article
(This article belongs to the Special Issue Fuzziness and Mathematical Logic )
Back to TopTop