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Abstract: The complex Bernoulli spiral is connected to Grandi curves and Chebyshev polynomials.
In this framework, pseudo-Chebyshev polynomials are introduced, and some of their properties
are borrowed to form classical trigonometric identities; in particular, a set of orthogonal
pseudo-Chebyshev polynomials of half-integer degree is derived.
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1. Introduction

The purpose of this article is to emphasize some simple connections among mathematical objects
apparently of different types as the Bernoulli spirals, the Grandi (rhodonea) curves, and the first and
second kind Chebyshev polynomials. Namely, by considering polar coordinates and the complex form
of the Bernoulli spiral, a straightforward connection between the real and imaginary part of the Bernoulli
spiral with the Grandi curves follows. Even the Chebyshev polynomials come out immediately.

Since the rhodonea curves exist even for a fractional index, it is possible to define an extension of
the first and second kind Chebyshev polynomials to the case of rational degree. Actually, the resulting
functions are not polynomials, but irrational functions. However, several properties of these functions
can be derived from their trigonometric definition, by using standard identities of circular functions.
In particular, for the function of half-integer degree, Tn+1/2 and Un+1/2, the orthogonality property still
holds, in the interval (−1, 1), with respect to the same weight function of their polynomial counterparts.

The second section of the article is devoted to recalling the most simple examples of spirals,
including the Archimedes, Bernoulli, Fermat, and other spirals, which can be derived by using an
analogy with Cartesian coordinates. Namely, the above- mentioned spirals, considered in the plane
(ρ, θ), correspond to elementary curves in the plane (x, y), which are, respectively, straight lines,
exponential, and power functions. This is, possibly, the motivation for the frequent occurrence of
spirals or Grandi curves in natural forms (see, e.g., [1,2]).

2. Spirals

The Archimedes spiral [3] (Figure 1) has the polar equation:

ρ = a θ , (a > 0, θ ∈ R) . (1)

If θ > 0, the spiral turns counter-clockwise, if θ < 0, the spiral turns clockwise.
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Bernoulli’s (logarithmic) spiral [4] (Figure 1) has the polar equation:

ρ = a bθ , (a, b ∈ R+) ,

θ = logb

(ρ

a

)
.

(2)

Varying the parameters a and b, one gets different types of spirals.
The coefficient a changes the size, and the term b controls it to be “narrow” and in what direction

it wraps itself.
Since a and b are positive constants, some interesting cases are possible. The most studied

logarithmic spiral is called harmonic, as the distance between coils is in the harmonic progression
whose ratio is φ =

√
5−1
2 , that is, the “golden ratio” relevant to the unit segment.

The logarithmic spiral was discovered by René Descartes in 1638 and studied by Jakob Bernoulli
(1654–1705).

Pierre Varignon (1654–1722) called it an equiangular spiral because:

1. The angle between the tangent at a point and the polar radius passing through that point
is constant.

2. The angle of inclination with respect to the concentric circles with the center in the origin is
also constant.

It is an example of a fractal. As it is written on J. Bernoulli’s tomb: Eadem mutata resurgo, but
the spiral represented there is of the Archimedes type.

Figure 1. Archimedes’ vs. Bernoulli’s spiral.

Fermat’s spiral (or parabolic) (Figure 2) has the polar equation:

ρ = ±a θ1/2 . (3)

Fermat’s (parabolic) spiral suggests the possibility of introducing intermediate graphs between
Archimedes’ and Bernoulli’s spirals.

In fact, in the plane (θ, ρ), the graph of Archimedes’ spiral is a straight line, while the Bernoulli
spiral has an exponential graph, and the Fermat spiral a parabolic graph.

Then, putting:

ρ = a θm/n , (m, n positive integers , n 6= 0) , (4)

one gets a family of spirals at varying m and n.
Notice that, if m > n, the exponent being greater than one, the coils of the spiral are widening

(Figure 2), while if m < n, the exponent is less than one, and therefore, the coils of the spiral are
shrinking (as in Fermat’s case).
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Another possibility is to assume θm/n, where m/n < 0 (in this case, the coils are wrapped around
the origin (Figure 3) or to use a graph with horizontal asymptotes, in order to get an asymptotic spiral.

Figure 2. Spiral, ρ = θ3/2, and Fermat spiral, ρ = θ1/2.

Figure 3. Spiral, ρ = θ−1/2, and asymptotic spiral, ρ = arctan(θ).

In what follows, we consider a “canonical form” of the Bernoulli spirals assuming a = 1 , b = en ,
that is the simplified polar equation:

ρ = en θ , (n ∈ N) . (5)

3. The Complex Bernoulli Spiral

We now introduce the complex case, putting:

ρ = <ρ + i=ρ , (6)

and considering a Bernoulli spiral of the type:

ρ = ei n θ = cos nθ + i sin nθ . (7)

Therefore, we have:

ρ1 = <ρ = cos nθ , ρ2 = =ρ = sin nθ . (8)

3.1. Rhodonea Curves

The curves defined in polar coordinates by:

ρ1 = <ρ = cos nθ , (9)

are called rhodonea curves or Grandi roses (examples in Figure 4), by the name of Luigi Guido Grandi
(1671–1742), who communicated his discovery in a letter to Leibniz in 1713 [5].

Curves of the type:

ρ2 = =ρ = sin nθ , (10)
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are essentially equivalent to the preceding ones, up to a rotation of π
2n radians.

Figure 4. Rhodonea, ρ = cos(4θ), and rhodonea, ρ = cos(5θ).

3.2. Chebyshev Polynomials

The Chebyshev polynomials of the first and second kind were introduced by Pafnuty L. Chebyshev
(1821–1894). They can be derived as the real and imaginary part of the exponential function ei n θ =

(cos θ + i sin θ)n (see Equation (7)), putting x = cos θ, and using the Euler formula (see [6] for details).
The first kind Chebyshev polynomials are important in approximation theory and Gaussian

quadrature rules. In fact, by using their roots—called Chebyshev nodes—the resulting interpolation
polynomial minimizes the Runge phenomenon. Furthermore, the relevant approximation is the best
approximation to a continuous function under the maximum norm.

Linked with these polynomials are also the Chebyshev polynomials of the second kind,
which appear in computing the powers of 2× 2 non-singular matrices [7]. Generalizations of such
polynomials have been also introduced, in particular for computing powers of higher order matrices
(see, e.g., [8,9]).

An excellent book is [10]. The importance of these polynomial sets in applications is shown in [11].
Recently, the Chebyshev polynomials of the first and second kind have been used in order to

represent the real and imaginary part of complex Appell polynomials [12,13].
The connection of the second kind Chebyshev polynomials with classical polynomials of number

theory has been recently underlined by Kim T., Kim D.S. et al. (see, e.g., [14–16]).

Definition of Chebyshev polynomials of the first kind:

T0(x) = 1 ,
T1(x) = x ,
Tn+1(x) = 2x Tn(x)− Tn−1(x) ,

Tn(x) = cos(n arccos(x)) ⇔ Tn(cos θ) = cos(n θ) .

(11)

Definition of Chebyshev polynomials of the second kind:

U0(x) = 1 ,
U1(x) = 2x ,
Un+1(x) = 2x Un(x)−Un−1(x) ,

√
1− x2 Un−1(x) = sin (n arccos(x)) ⇔ Un−1(cos θ) =

sin[n θ]

sin θ
.

(12)

As a consequence of the above considerations, it is possible to note the connection of the rhodonea
curves with the first kind Chebyshev polynomials.

In fact, the rhodonea curve ρ = cos(n θ) (Figure 4) can be interpreted as Tn(cos θ) (Equation (11)).
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In a similar way, the second kind Chebyshev polynomials have as graphical images the roses of
the type Un(cos θ) corresponding to sin((n− 1)θ)/ sin(θ) (examples in Figure 5).

Note that, in both cases, the rhodonea curve has n petals if n is odd and 2n petals if n is even.

Figure 5. U4 rose, ρ = sin(3θ)/ sin(θ), and U5 rose, ρ = sin(4θ)/ sin(θ).

4. Pseudo-Chebyshev Polynomials

The rhodonea curves exist even for rational values of the index n (see, e.g., [17]). This allows us
to consider the sets of first and second kind pseudo-Chebyshev polynomials (graphical examples in
Figures 6 and 7). The prefix “pseudo” is used because actually, they are not polynomials, but irrational
functions, as it is seen in what follows.

Figure 6. Pseudo T3/2 = cos(1.5 arccos(x)), and rhodonea, ρ = cos(1.5 θ).

Figure 7. Pseudo T9/2 = cos(4.5 arccos(x)), and rhodonea, ρ = cos(4.5 θ).

We start assuming the degree in the form n + 1
2 , that is a semi-integer number. This seems to be

the most interesting case, since the resulting functions Tn+1/2 and Un+1/2 are proven to be orthogonal,
in the interval (−1, 1), with respect to the same, corresponding weights, of the first and second kind
Chebyshev polynomials.

We put, by definition:

Tk+ 1
2
(x) = cos

(
(k + 1

2 ) arccos(x)
)

(13)
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√
1− x2 Uk− 1

2
(x) = sin

(
(k + 1

2 ) arccos(x)
)

. (14)

Remark 1. It is worth noting that the third and fourth kind Chebyshev polynomials Vn(x) and Wn(x) (see,
e.g., [18]) have a similar definition, but they do not coincide with the pseudo-Chebyshev, since actually they are
true polynomials, and satisfy orthogonality properties with respect to different weights (see Figures 8 and 9).

The third and fourth kind Chebyshev polynomials have been studied and applied by several scholars (see,
e.g., [18–20]), because they are useful in quadrature rules, when the singularities occur only at one of the end
points (+1 or − 1) (see [10]). Furthermore, recently, they have been applied in numerical analysis for solving
high odd-order boundary value problems with homogeneous or nonhomogeneous boundary conditions [19].

Figure 8. Pseudo Tn/2, n = 3, 5, 7, 9, and third kind Vk(x) k = 1, 2, 3, 4.

Figure 9. Pseudo Un/2, n = 1, 3, 5, 7, and fourth kind Wk(x) k = 0, 1, 2, 3.

4.1. The Case of Half-Integer Degree

In particular, we have:

T1/2(x) = cos
(

1
2 arccos(x)

)
=

√
1 + x

2
, (15)

√
1− x2 U−1/2(x) = sin

(
1
2 arccos(x)

)
=

√
1− x

2
. (16)

Therefore, we find:
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T3/2(x) = cos
( 3

2 arccos(x)
)
= cos

(
arccos(x) + 1

2 arccos(x)
)

= cos(arccos(x)) cos
(

1
2 arccos(x)

)
− sin(arccos(x)) sin

(
1
2 arccos(x)

)
= x

√
1 + x

2
−
√

1− x2

√
1− x

2
,

(17)

T5/2(x) = cos
( 5

2 arccos(x)
)

cos
(

2 arccos(x) + 1
2 arccos(x)

)
= cos(2 arccos(x)) cos

(
1
2 arccos(x)

)
− sin(2 arccos(x)) sin

(
1
2 arccos(x)

)
= T2(x)

√
1 + x

2
−
√

1− x2 U1(x)
√

1− x
2

.

(18)

4.2. Recurrence Relations

We have, in general:

Tn+1/2(x) = cos
(

n arccos(x) + 1
2 arccos(x)

)
= Tn(x)

√
1 + x

2
−
√

1− x2 Un−1(x)
√

1− x
2

,

that is:

Tn+1/2(x) = Tn(x) T1/2(x)−
(
1− x2) Un−1(x)U−1/2(x) . (19)

In a similar way, for the second kind, we find:

Un+1/2(x) = Un−1(x) T1/2(x) + U−1/2(x) Tn(x) . (20)

Remark 2. Note that the number of rose petals of the curves ρ = cos( n
2 θ) , n = 1, 3, 5, . . . is given by the

sequence {2, 6, 10, 14, 18, 22, . . . }, which appears in the Encyclopedia of Integer Sequences [21] at A016825:
positive integers congruent to 2 mod 4 : a(n) = 4n + 2, for n ≥ 0.

4.3. More General Formulas

By using cosine addition formulas, putting:

m
n

=
p
q
+

r
s

, (21)

we find:

Tm/n(x) = Tp/q(x) Tr/s(x)−
(
1− x2) U(p/q)−1(x)U(r/s)−1(x) , (22)

and by using the sine addition formulas:

Um/n(x) = U(p/q)−1(x) Tr/s(x) + U(r/s)−1(x) Tp/q(x) . (23)
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Particular Results

T1(x) = T1/3(x) T2/3(x)−
(
1− x2) U−2/3(x)U−1/3(x) . (24)

T1(x) = cos
[
3 · 1

3 arccos(x)
]
= 4 T3

1/3(x)− 3 T1/3(x) . (25)

T2(x) = cos
[
3 · 2

3 arccos(x)
]
= 4 T3

2/3(x)− 3 T2/3(x) . (26)

T2/3(x) = cos
[
2 · 1

3 arccos(x)
]
= 1− 2 sin2

[
1
3 arccos(x)

]
= 1− 2 (1− x2)U−2/3(x) .

(27)

U−1/3(x) =
sin
[
2 · 1

3 arccos(x)
]

√
1− x2

=
2√

1− x2
sin
[

1
3

arccos(x)
]

cos
[

1
3

arccos(x)
]
= 2 U−2/3(x) T1/3(x) .

(28)

U−2/3(x) =
sin
[

1
3 arccos(x)

]
√

1− x2
=

√
1− T2

1/3(x)
1− x2 . (29)

Combining the above equations, we find:

T1(x) = T1/3(x) T2/3(x)− 2 T1/3(x)
(

1− T2
1/3(x)

)
= T1/3(x)

(
2 T2

1/3(x) + T2/3(x)− 2
)

.

(30)

4.4. Orthogonality for Half-Integer Degree

Theorem 1. The Chebyshev functions Tm/2(x) satisfy the orthogonality property:

∫ 1

−1
Tm/2(x) Tn/2(x)

1√
1− x2

dx = 0 , (m 6= n) , (31)

where m,n are positive odd numbers such that m + n = 2k, k = 2, 3, 4, . . . ,

∫ 1

−1
T2

m/2(x)
1√

1− x2
dx =

π

2
. (32)

Proof. As a consequence of Werner formulas, we have, under the above conditions,

∫ 1

−1
cos(m/2 arccos(x)) cos(n/2 arccos(x))

1√
1− x2

dx = (putting x = cos(2t) )

= 2
∫ π/2

0
cos(mt) cos(nt) dt = 0 ,

(33)
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and:

∫ 1

−1
cos2(m/2 arccos(x))

1√
1− x2

dx = 2
∫ π/2

0
cos2(mt) dt =

π

2
. (34)

Theorem 2. The Chebyshev functions Um/2(x) satisfy the orthogonality property:

∫ 1

−1
Um/2(x)Un/2(x)

√
1− x2 dx = 0 , (m 6= n) , (35)

where m, n are positive odd numbers such that m + n = 2k, k = 2, 3, 4, . . . ,

∫ 1

−1
U2

m/2(x)
√

1− x2 dx =
π

2
. (36)

Proof. We have, under the above conditions,∫ 1

−1
sin(m/2 arccos(x)) sin(n/2 arccos(x))

√
1− x2 dx = (putting x = cos(2t) )

= 2
∫ π/2

0
sin(mt) sin(nt) dt = 0 ,

(37)

and:

∫ 1

−1
sin2(m/2 arccos(x))

√
1− x2 dx = 2

∫ π/2

0
sin2(mt) dt =

π

2
.

(38)

5. Conclusions

The complex form of the Bernoulli spiral, by using Euler formulas, allows us to emphasize
connections with Grandi (rhodonea) curves. The rhodonea with the fractional index can be viewed as
an extension of first and second kind Chebyshev polynomials to irrational functions. The properties of
these “pseudo-Chebyshev functions” are borrowed from classical trigonometric identities. In particular,
in the case of half-integer degree, the corresponding functions satisfy the same orthogonality property
of the corresponding Chebyshev polynomials of integer degree.
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