Next Article in Journal
Financial Technology: Review of Trends, Approaches and Management
Next Article in Special Issue
A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree
Previous Article in Journal
Application of the Combined ANN and GA for Multi-Response Optimization of Cutting Parameters for the Turning of Glass Fiber-Reinforced Polymer Composites
Previous Article in Special Issue
A Certain Mean Square Value Involving Dirichlet L-Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Better Approaches for n-Times Differentiable Convex Functions

1
Department of Mathematics, Anand International College of Engineering, Jaipur 303012, Rajasthan, India
2
International Center for Basic and Applied Sciences, Jaipur 302029, India
3
Department of Mathematics, Harish-Chandra Research Institute, Allahabad 211019, India
4
Department of Mathematics, Netaji Subhas University of Technology Dwarka Sector-3, Dwarka, Delhi 110078, India
5
Department of Mathematics, Faculty of Sciences and Arts, Giresun University, Giresun 28200, Turkey
6
Department of Mathematics, Huzhou University, Huzhou 313000, China
7
Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2020, 8(6), 950; https://doi.org/10.3390/math8060950
Submission received: 25 April 2020 / Revised: 25 May 2020 / Accepted: 27 May 2020 / Published: 10 June 2020
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)

Abstract

:
In this work, by using an integral identity together with the Hölder–İşcan inequality we establish several new inequalities for n-times differentiable convex and concave mappings. Furthermore, various applications for some special means as arithmetic, geometric, and logarithmic are given.
MSC:
26A51; 26D10; 26D15

1. Introduction

Definition 1.
A function f : I R R is said to be convex if the inequality
f t x + ( 1 t ) y t f x + ( 1 t ) f y
is valid for all x , y I and t 0 , 1 . If this inequality reverses, then f is said to be concave on interval I .
The above is a well known definition in the literature. Convexity theory has been appeared as a powerful technique to study a wide class of unrelated problems in pure and applied sciences (see, for example [1,2,3,4]). Recently, in the literature many researchers contributed their research on n-times differentiable functions on several kinds of convexities (see, for example [1,2,3,5,6,7,8]) and the references within these papers.
The classical Hermite–Hadamard inequality provides estimates of the mean value of a continuous convex or concave function.
Definition 2.
f : I R R be a concave function on the interval I of real numbers and a , b I with a < b . The inequality
f a + f b 2 1 b a a b f x d x f a + b 2
is known in the literature as a Hermite–Hadamard’s inequality for convex functions. Both inequalities holds if f is concave.
Hadamard’s type inequalities for convex or concave functions has received the attention of the many researchers in recent years due to their remarkable variety of refinements and generalizations (see, for example see [1,2,3,5,6,7,9,10,11,12]).
A refinement of Hölder integral inequality better approach than Hölder integral inequality can be given as follows:
Theorem 1
(Hölder–İşcan Integral Inequality [13]). Let p > 1 and 1 p + 1 q = 1 . If f and g are real functions defined on interval a , b and if f p , g q are integrable functions on interval a , b then
a b f ( x ) g ( x ) d x 1 b a { a b ( b x ) f ( x ) p d x 1 p a b ( b x ) g ( x ) q d x 1 q + a b ( x a ) f ( x ) p d x 1 p a b ( x a ) g ( x ) q d x 1 q }
In this paper, by using the Hölder–İşcan integral inequality (better approach than Hölder integral inequality) and together with an integral identity, we present a rather generalization of Hadamard type inequalities for functions whose derivative is absolute value at the certain power are convex and concave.
Let 0 < a < b , and throughout this paper we will use
A a , b = a + b 2 G a , b = a b L p a , b = b p + 1 a p + 1 ( p + 1 ) ( b a ) 1 p , a b , p R , p 1 , 0
for the arithmetic, geometric, generalized logarithmic mean, respectively.

2. Main Results

We will use the following Lemma to obtain our main results.
Lemma 1
([8]). Let f : I R R be n-times differentiable mapping on I for n N and f ( n ) L a , b , where a , b I with a < b , we have the identity
k = 0 n 1 ( 1 ) k f k ( b ) b k + 1 f k ( a ) a k + 1 ( k + 1 ) ! a b f ( x ) d x = ( 1 ) n + 1 n ! a b x n f n ( x ) d x
where an empty sum is understood to be nil.
Theorem 2.
For n N ; let f : I 0 , R be n-times differentiable function on I and a , b I with a < b . If f ( n ) L a , b and f ( n ) q for q > 1 is convex on interval a , b , then the following inequality holds
k = 0 n 1 ( 1 ) k f k ( b ) b k + 1 f k ( a ) a k + 1 ( k + 1 ) ! a b f ( x ) d x 1 n ! b a 3 1 q b L n p n p ( a , b ) L n p + 1 n p + 1 ( a , b ) 1 p A 1 q 2 f ( n ) ( a ) q , f ( n ) ( b ) q + L n p + 1 n p + 1 ( a , b ) a L n p n p ( a , b ) 1 p A 1 q f ( n ) ( a ) q , 2 f ( n ) ( b ) q ,
where 1 p + 1 q = 1 .
Proof. 
If f ( n ) q for q > 1 is convex on interval a , b , then by using Lemma 1, the Hölder–İşcan integral inequality and from the following inequality
f ( n ) ( x ) q = f ( n ) x a b a b + b x b a a q x a b a f ( n ) ( b ) q + b x b a f ( n ) ( a ) q ,
we have
k = 0 n 1 ( 1 ) k f k ( b ) b k + 1 f k ( a ) a k + 1 ( k + 1 ) ! a b f ( x ) d x 1 n ! a b x n f ( n ) ( x ) d x 1 n ! 1 b a a b b x x n p d x 1 p a b b x f ( n ) ( x ) q d x 1 q + 1 n ! 1 b a a b x a x n p d x 1 p a b x a f ( n ) ( x ) q d x 1 q 1 n ! 1 b a a b b x x n p d x 1 p a b b x x a b a f ( n ) ( b ) q + b x b a f ( n ) ( a ) q d x 1 q + 1 n ! 1 b a a b x a x n p d x 1 p a b x a x a b a f ( n ) ( b ) q + b x b a f ( n ) ( a ) q d x 1 q = 1 n ! b a 3 1 q b L n p n p ( a , b ) L n p + 1 n p + 1 ( a , b ) 1 p A 1 q 2 f ( n ) ( a ) q , f ( n ) ( b ) q + L n p + 1 n p + 1 ( a , b ) a L n p n p ( a , b ) 1 p A 1 q f ( n ) ( a ) q , 2 f ( n ) ( b ) q .
This completes the proof of Theorem 2. □
Corollary 1.
Under the conditions of Theorem 2 for n = 1 we have the following inequality:
f ( b ) b f ( a ) a b a 1 b a a b f ( x ) d x 1 3 1 q b a 1 q 1 { b L p p ( a , b ) L p + 1 p + 1 ( a , b ) 1 p A 1 q 2 f ( a ) q , f ( b ) q } + L p + 1 p + 1 ( a , b ) a L p p ( a , b ) 1 p A 1 q f ( a ) q , 2 f ( b ) q } .
Proposition 1.
Let a , b 0 , with a < b , q > 1 and m , n N with m n , then we have
L m m ( a , b ) m + 1 k = 0 n 1 ( 1 ) k P ( m , k ) ( k + 1 ) ! 1 1 n ! 1 3 1 q b a 1 q 1 × { b L n p n p ( a , b ) L n p + 1 n p + 1 ( a , b ) 1 p A 1 q 2 a m n q , b m n q } + L n p + 1 n p + 1 ( a , b ) a L n p n p ( a , b ) 1 p A 1 q a m n q , 2 b m n q } ,
where
P ( m , n ) = { m ( m 1 ) ( m n + 1 ) , m > n n ! , m = n 1 , n = 0 .
Proof. 
Under the assumption of the Proposition 1, let f ( x ) = x m , x 0 , . Then
f ( n ) ( x ) q = P ( m , n ) x m n q
is convex on 0 , and the result follows directly from Theorem 2. □
Example 1.
If we take m = 2 , n = 1 , p = q = 2 in the inequality (3), then we have the following inequality:
2 A a 2 , b 2 + G 2 a , b 1 2 2 { A 3 a 2 , b 2 + G 2 a , b A 2 a 2 , b 2 1 2 } + A a 2 , 3 b 2 + G 2 a , b A a 2 , 2 b 2 1 2 } .
Proposition 2.
Let a , b 0 , with a < b , q > 1 and n N , then we have
1 1 3 1 q b a 1 q 1 { b L n p n p ( a , b ) L n p + 1 n p + 1 ( a , b ) 1 p A 1 q 2 a n q , b n q } + L n p + 1 n p + 1 ( a , b ) a L n p n p ( a , b ) 1 p A 1 q a n q , 2 b n q } .
Proof. 
Under the assumption of the Proposition 2, let f ( x ) = ln x , x 0 , . Then
f ( n ) ( x ) q = ( n 1 ) ! x n q
is convex on 0 , and the result follows directly from Theorem 2. □
Example 2.
If we take n = 1 , p = q = 2 in the inequality (4), then we have the following inequality:
1 1 3 2 A 3 a 2 , b 2 + G 2 a , b 1 2 A 1 2 a 2 , 2 b 2 G 2 a , b + A a 2 , 3 b 2 + G 2 a , b 1 2 A 1 2 2 a 2 , b 2 G 2 a , b .
Proposition 3.
Let a , b 0 , with a < b , q > 1 and m ( , 0 ] [ 1 , ) 2 q , q , then we have
L m q + 1 m q + 1 ( a , b ) 1 3 1 q b a 1 q 1 { b L p p ( a , b ) L p + 1 p + 1 ( a , b ) 1 p A 1 q 2 a m , b m + L p + 1 p + 1 ( a , b ) a L p p ( a , b ) 1 p A 1 q a m , 2 b m } .
Proof. 
Under the assumption of the Proposition 3, let f ( x ) = q m + q x m q + 1 , x 0 , . Then
f ( x ) q = x m
is convex on 0 , and the result follows directly from Corollary 1. □
Example 3.
If we take m = 2 , p = q = 2 in the inequality (5), then we have the following inequality:
2 A a 2 , b 2 + G 2 a , b 1 2 { A 3 a 2 , b 2 + G 2 a , b 1 2 A 1 2 2 a 2 , b 2 + A a 2 , 3 b 2 + G 2 a , b 1 2 A 1 2 a 2 , 2 b 2 } .
Theorem 3.
For n N ; let f : I 0 , R be n-times differentiable function on I and a , b I with a < b . If f ( n ) L a , b and f ( n ) q for q > 1 is convex on interval a , b , then the following inequality holds
k = 0 n 1 ( 1 ) k f k ( b ) b k + 1 f k ( a ) a k + 1 ( k + 1 ) ! a b f ( x ) d x 1 n ! 1 2 1 p b a 2 p 1 { f ( n ) ( b ) q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) + f ( n ) ( a ) q L n q + 2 n q + 2 ( a , b ) 2 b L n q + 1 n q + 1 ( a , b ) + b 2 L n q n q ( a , b ) 1 q + f ( n ) ( b ) q L n q + 2 n q + 2 ( a , b ) 2 a L n q + 1 n q + 1 ( a , b ) + a 2 L n q n q ( a , b ) + f ( n ) ( a ) q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) 1 q } ,
where 1 p + 1 q = 1 .
Proof. 
Since f ( n ) q for q > 1 is convex on interval a , b , by using Lemma 1 and the Hölder–İşcan integral inequality, we obtain the following inequality:
k = 0 n 1 ( 1 ) k f k ( b ) b k + 1 f k ( a ) a k + 1 ( k + 1 ) ! a b f ( x ) d x 1 n ! a b 1 . x n f ( n ) ( x ) d x 1 n ! 1 b a { a b b x d x 1 p a b b x x n q f ( n ) ( x ) q d x 1 q } + a b x a d x 1 p a b x a x n q f ( n ) ( x ) q d x 1 q } 1 n ! 1 b a { a b b x d x 1 p f ( n ) ( b ) q b a a b b x x a x n q d x + f ( n ) ( a ) q b a a b b x 2 x n q d x 1 q + a b x a d x 1 p f ( n ) ( b ) q b a a b x a 2 x n q d x + f ( n ) ( a ) q b a a b x a b x x n q d x 1 q } = b a 2 p 1 n ! 2 1 p { f ( n ) ( b ) q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) + f ( n ) ( a ) q L n q + 2 n q + 2 ( a , b ) 2 b L n q + 1 n q + 1 ( a , b ) + b 2 L n q n q ( a , b ) 1 q } + f ( n ) ( b ) q L n q + 2 n q + 2 ( a , b ) 2 a L n q + 1 n q + 1 ( a , b ) + a 2 L n q n q ( a , b ) + f ( n ) ( a ) q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) 1 q } .
This completes the proof of Theorem 3, after a little simplifications. □
Remark 1.
In [8], Maden et al. obtained the following inequality using Hölder inequality and similar proof method of Theorem 3.
k = 0 n 1 ( 1 ) k f k ( b ) b k + 1 f k ( a ) a k + 1 ( k + 1 ) ! a b f ( x ) d x 1 n ! b a 1 p × f ( n ) ( b ) q L n q + 1 n q + 1 ( a , b ) a L n q n q ( a , b ) + f ( n ) ( a ) q b L n q n q ( a , b ) L n q + 1 n q + 1 ( a , b ) 1 q
The inequality (6) gives better results than the inequality (7). Indeed, using the inequality x λ + y λ / 2 x + y / 2 λ , x , y 0 , 0 < λ 1 by simple calculation we get
{ 1 2 f ( n ) ( b ) q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) + f ( n ) ( a ) q L n q + 2 n q + 2 ( a , b ) 2 b L n q + 1 n q + 1 ( a , b ) + b 2 L n q n q ( a , b ) 1 q + 1 2 f ( n ) ( b ) q L n q + 2 n q + 2 ( a , b ) 2 a L n q + 1 n q + 1 ( a , b ) + a 2 L n q n q ( a , b ) + f ( n ) ( a ) q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) 1 q } b a 1 q 2 1 q f ( n ) ( b ) q L n q + 1 n q + 1 ( a , b ) a L n q n q ( a , b ) + f ( n ) ( a ) q b L n q n q ( a , b ) L n q + 1 n q + 1 ( a , b ) 1 q .
which shows that the inequality (6) gives better results than the inequality (7).
Corollary 2.
Under the conditions of Theorem 3 for n = 1 , we have the following inequality:
f ( b ) b f ( a ) a b a 1 b a a b f ( x ) d x 1 2 1 p b a 2 p 2 { f ( b ) q L q + 2 q + 2 ( a , b ) + ( a + b ) L q + 1 q + 1 ( a , b ) a b L q q ( a , b ) + f ( a ) q L q + 2 q + 2 ( a , b ) 2 b L q + 1 q + 1 ( a , b ) + b 2 L q q ( a , b ) 1 q + f ( b ) q L q + 2 q + 2 ( a , b ) 2 a L q + 1 q + 1 ( a , b ) + a 2 L q q ( a , b ) + f ( a ) q L q + 2 q + 2 ( a , b ) + ( a + b ) L q + 1 q + 1 ( a , b ) a b L q q ( a , b ) 1 q } .
Proposition 4.
Let a , b 0 , with a < b , q > 1 and m , n N with m n , then we have
L m m ( a , b ) m + 1 k = 0 n 1 ( 1 ) k P ( m , k ) ( k + 1 ) ! 1 P ( m , n ) n ! 1 2 1 p b a 2 p 1 { b m n q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) + a m n q L n q + 2 n q + 2 ( a , b ) 2 b L n q + 1 n q + 1 ( a , b ) + b 2 L n q n q ( a , b ) 1 q + b m n q L n q + 2 n q + 2 ( a , b ) 2 a L n q + 1 n q + 1 ( a , b ) + a 2 L n q n q ( a , b ) + a m n q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) 1 q } ,
where
P ( m , n ) = { m ( m 1 ) ( m n + 1 ) , m > n n ! , m = n 1 , n = 0 . }
Proof. 
Under the assumption of the Proposition 4, let f ( x ) = x m , x 0 , . Then
f ( n ) ( x ) q = P ( m , n ) x m n q
is convex on 0 , and the result follows directly from Theorem 3, respectively. □
Proposition 5.
Let a , b 0 , with a < b , q > 1 and n N , then we have
1 b a 2 p 2 2 1 p { b n q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) + a n q L n q + 2 n q + 2 ( a , b ) 2 b L n q + 1 n q + 1 ( a , b ) + b 2 L n q n q ( a , b ) 1 q } + b n q L n q + 2 n q + 2 ( a , b ) 2 a L n q + 1 n q + 1 ( a , b ) + a 2 L n q n q ( a , b ) + a n q L n q + 2 n q + 2 ( a , b ) + ( a + b ) L n q + 1 n q + 1 ( a , b ) a b L n q n q ( a , b ) 1 q } .
Proof. 
Under the assumption of the Proposition 5, let f ( x ) = ln x , x 0 , . Then
f ( n ) ( x ) q = ( n 1 ) ! x n q
is convex on 0 , and the result follows directly from Theorem 3. □
Proposition 6.
Let a , b 0 , with a < b , q > 1 and m ( , 0 ] [ 1 , ) 2 q , q , we have
L m q + 1 m q + 1 ( a , b ) b a 2 p 2 2 1 p { b m L q + 2 q + 2 ( a , b ) + ( a + b ) L q + 1 q + 1 ( a , b ) a b L q q ( a , b ) + a m L q + 2 q + 2 ( a , b ) 2 b L q + 1 q + 1 ( a , b ) + b 2 L q q ( a , b ) 1 q + b m L q + 2 q + 2 ( a , b ) 2 a L q + 1 q + 1 ( a , b ) + a 2 L q q ( a , b ) + a m L q + 2 q + 2 ( a , b ) + ( a + b ) L q + 1 q + 1 ( a , b ) a b L q q ( a , b ) 1 q } .
Proof. 
The result follows directly from Corollary 2 for the function
f ( x ) = q m + q x m q + 1 , x 0 , .
This completes the proof of Proposition. □
Corollary 3.
For m = 1 from Proposition 6, we obtain the following inequality:
L 1 q + 1 1 q + 1 ( a , b ) b a 1 p 1 2 1 p { L q + 2 q + 2 ( a , b ) L q + 1 q + 1 ( a , b ) + b L q q ( a , b ) 1 q } + L q + 2 q + 2 ( a , b ) + L q + 1 q + 1 ( a , b ) a L q q ( a , b ) 1 q } .
Theorem 4.
For n N ; let f : I 0 , R be n-times differentiable function on I and a , b I with a < b . If f ( n ) L a , b and f ( n ) q for q > 1 is concave on a , b , then the following inequality holds
k = 0 n 1 ( 1 ) k f k ( b ) b k + 1 f k ( a ) a k + 1 ( k + 1 ) ! a b f ( x ) d x ( b a ) 1 q f ( n ) a + b 2 n ! b L n p n p ( a , b ) L n p + 1 n p ( a , b ) 1 p + L n p + 1 n p + 1 ( a , b ) a L n p n p + 1 ( a , b ) 1 p ,
where 1 p + 1 q = 1 .
Proof. 
Since the function f ( n ) q for q > 1 is concave on interval a , b , with respect to Hermite–Hadamard integral inequality, we get
a b f ( n ) ( x ) q d x ( b a ) f ( n ) a + b 2 q
and thus we have
1 b a a b ( b x ) f ( n ) ( x ) q d x a b f ( n ) ( x ) q d x ( b a ) f ( n ) a + b 2 q ,
similarly
1 b a a b ( x a ) f ( n ) ( x ) q d x ( b a ) f ( n ) a + b 2 q .
Using Lemma 1 and the Hölder–İşcan integral inequality, we obtain
k = 0 n 1 ( 1 ) k f k ( b ) b k + 1 f k ( a ) a k + 1 ( k + 1 ) ! a b f ( x ) d x 1 n ! a b x n f ( n ) ( x ) d x 1 n ! 1 b a { a b b x x n p d x 1 p a b b x f ( n ) ( x ) q d x 1 q } + a b x a x n p d x 1 p a b x a f ( n ) ( x ) q d x 1 q } 1 n ! 1 b a { a b b x x n p d x 1 p ( b a ) 2 f ( n ) a + b 2 q 1 q } + a b x a x n p d x 1 p ( b a ) 2 f ( n ) a + b 2 q 1 q } = ( b a ) 1 q f ( n ) a + b 2 n ! b L n p n p ( a , b ) L n p + 1 n p + 1 ( a , b ) 1 p + L n p + 1 n p + 1 ( a , b ) a L n p n p ( a , b ) 1 p
This completes the proof of Theorem 4. □
Corollary 4.
Under the conditions of the Theorem 4 for n = 1 , we have the following inequality:
f ( b ) b f ( a ) a b a 1 b a a b f ( x ) d x b a 1 / q f a + b 2 b L p p ( a , b ) L p + 1 p + 1 ( a , b ) 1 p + L p + 1 p + 1 ( a , b ) a L p p ( a , b ) 1 p .
Proposition 7.
Let a , b 0 , with a < b , q > 1 and m , n N with m n , then we have
L m m ( a , b ) m + 1 k = 0 n 1 ( 1 ) k P ( m , k ) ( k + 1 ) ! 1 P ( m , n ) n ! b a 1 q a + b 2 m n b L n p n p ( a , b ) L n p + 1 n p + 1 ( a , b ) 1 p + L n p + 1 n p + 1 ( a , b ) a L n p n p ( a , b ) 1 p ,
where
P ( m , n ) = { m ( m 1 ) ( m n + 1 ) , m > n n ! , m = n 1 , n = 0 . }
Proof. 
Under the assumption of the Proposition 7, let f ( x ) = x m , x 0 , . Then
f ( n ) ( x ) q = P ( m , n ) x m n q
is convex on 0 , and the result follows directly from the Theorem 4. □
Proposition 8.
Let a , b 0 , with a < b , q > 1 and n N , then we have
1 b a 1 q A n a , b b L n p n p ( a , b ) L n p + 1 n p ( a , b ) 1 p + L n p + 1 n p + 1 ( a , b ) a L n p n p + 1 ( a , b ) 1 p .
Proof. 
Under the assumption of the Proposition 8, let f ( x ) = ln x , x 0 , . Then
f ( n ) ( x ) q = ( n 1 ) ! x n q
is convex on 0 , and the result follows directly from the Theorem 4. □
Proposition 9.
Let a , b 0 , with a < b , q > 1 and m 0 , 1 , we have
L m q + 1 m q + 1 ( a , b ) b a 1 q A m q ( a , b ) b L p p ( a , b ) L p + 1 p + 1 ( a , b ) 1 p + L p + 1 p + 1 ( a , b ) a L p p ( a , b ) 1 p .
Proof. 
Under the assumption of the Proposition 9, let f ( x ) = q m + q x m q + 1 , x 0 , . Then
f ( x ) q = x m
is concave on 0 , and the result follows directly from the Corollary 4. □

3. Conclusions

By using an integral identity together with the Hölder–İşcan integral inequality (which is a better approach than Hölder integral inequality), we obtain several new inequalities for n-times differentiable convex and concave mappings. We would like to emphasize that some new integral inequalities can be obtained by using a similar method to different types of convex functions.

Author Contributions

Investigation, P.A., M.K., İ.İ., and Y.-M.C.; Methodology, P.A., M.K., İ.İ., and Y.-M.C.; Writing—original draft, P.A., M.K., İ.İ., and Y.-M.C.; Writing—review and editing, P.A., M.K., İ.İ., and Y.-M.C. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11701176, 11626101, 11601485).

Acknowledgments

The Praveen Agarwal would like to thanks the worthy referees and editor for their valuable suggestions for our paper in Mathematics. This work was supported by under the first author research grant supported by SERB Project Number: TAR/2018/000001, DST(project DST/INT/DAAD/P-21/2019) and DST (project INT/RUS/RFBR/308).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
  2. Hwang, D.Y. Some Inequalities for n-time Differentiable Mappings and Applications. Kyungpook Math. J. 2003, 43, 335–343. [Google Scholar]
  3. İşcan, İ. Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  4. Xi, B.Y.; Qi, F. Some integral inequalities of Hermite–Hadamard type for convex functions with applications to means. J. Funct. Spaces Appl. 2012, 2012, 980438. [Google Scholar] [CrossRef] [Green Version]
  5. Bai, S.P.; Wang, S.H.; Qi, F. Some Hermite–Hadamard type inequalities for n-time differentiable α,m-convex functions. J. Inequal. Appl. 2012, 2012, 267. [Google Scholar] [CrossRef] [Green Version]
  6. Cerone, P.; Dragomir, S.S.; Roumeliotis, J.; Sunde, J. A new generalization of the trapezoid formula for n-time differentiable mappings and applications. Demonstr. Math. 2000, 33, 719–736. [Google Scholar] [CrossRef] [Green Version]
  7. Jiang, W.D.; Niu, D.W.; Hua, Y.; Qi, F. Generalizations of Hermite–Hadamard inequality to n-time differentiable function which are s-convex in the second sense. Analysis 2012, 32, 209–220. [Google Scholar] [CrossRef]
  8. Maden, S.; Kadakal, H.; Kadakal, M.; İmdat, İ. Some new integral inequalities for n-times differentiable convex and concave functions. J. Nonlinear Sci. Appl. 2017, 10, 6141–6148. [Google Scholar] [CrossRef] [Green Version]
  9. Kadakal, H. New Inequalities for Strongly r-Convex Functions. J. Funct. Spaces 2019, 2019, 1219237. [Google Scholar] [CrossRef]
  10. Kadakal, H. α,m1,m2-convexity and some inequalities of Hermite–Hadamard type. Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat. 2019, 68, 2128–2142. [Google Scholar] [CrossRef]
  11. Özcan, S. Some Integral Inequalities for Harmonically α,s-Convex Functions. J. Funct. Space 2019, 2019, 2394021. [Google Scholar] [CrossRef] [Green Version]
  12. Özcan, S.; İşcan, İ. Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019, 2019, 201. [Google Scholar] [CrossRef] [Green Version]
  13. İşcan, İ. New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, 2019, 304. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Agarwal, P.; Kadakal, M.; İşcan, İ.; Chu, Y.-M. Better Approaches for n-Times Differentiable Convex Functions. Mathematics 2020, 8, 950. https://doi.org/10.3390/math8060950

AMA Style

Agarwal P, Kadakal M, İşcan İ, Chu Y-M. Better Approaches for n-Times Differentiable Convex Functions. Mathematics. 2020; 8(6):950. https://doi.org/10.3390/math8060950

Chicago/Turabian Style

Agarwal, Praveen, Mahir Kadakal, İmdat İşcan, and Yu-Ming Chu. 2020. "Better Approaches for n-Times Differentiable Convex Functions" Mathematics 8, no. 6: 950. https://doi.org/10.3390/math8060950

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop