Existence of Weak Solutions for a New Class of Fractional p-Laplacian Boundary Value Systems
Abstract
:1. Introduction
2. Preliminaries
3. The Main Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivatives: Theory and Applications; Gordon and Breach: Longhorne, PA, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientic: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Agarwal, R.P.; Benchohra, M.; Hamani, S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2010, 109, 973–1033. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58, 1838–1843. [Google Scholar] [CrossRef] [Green Version]
- Bai, C. Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative. J. Math. Anal. Appl. 2011, 384, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Bai, C. Solvability of multi-point boundary value problem of nonlinear impulsive fractional di erential equation at resonance. Electron. J. Qual. Theory Differ. Equ. 2011, 89, 1–19. [Google Scholar] [CrossRef]
- Bai, Z.; Lu, H. Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 2005, 311, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 2009, 71, 2391–2396. [Google Scholar] [CrossRef]
- Kosmatov, N. Integral equations and initial value problems for nonlinear differential equations of fractional order. Nonlinear Anal. 2009, 70, 2521–2529. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 6, 2677–2682. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y. A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 2011, 12, 262–272. [Google Scholar] [CrossRef]
- Wei, Z.; Dong, W.; Che, J. Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative. Nonlinear Anal. 2010, 73, 3232–3238. [Google Scholar] [CrossRef]
- Zhang, S. Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 2010, 59, 1300–1309. [Google Scholar] [CrossRef] [Green Version]
- Mawhin, J.; Willem, M. Critical Point Theorey and Hamiltonian Systems; Springer: New York, NY, USA, 1989. [Google Scholar]
- Rabinowitz, P.H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. In CBMS; American Mathematical Society: Providence, RI, USA, 1986; Volume 65. [Google Scholar]
- Willem, M. Minimax Theorems; Birkhauser: Basel, Switzerland, 1996. [Google Scholar]
- Samad, M.K.; Afrouzi, G.A.; Armin, H. Existence of three solutions for a class of fractional boundary value systems. Int. J. Nonlinear Anal. Appl. 2016, 7, 351–362. [Google Scholar]
- Zhao, Y.; Chen, H.; Qin, B. Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods. Appl. Math. Comput. 2015, 257, 417–427. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, H.; Zhang, Q. Infinitely many solutions for fractional differential system via variational method. J. Appl. Math. Comput. 2016, 50, 589–609. [Google Scholar] [CrossRef]
- Ricceri, B. A three critical points theorem revisited. Nonlinear Anal. 2009, 70, 3084–3089. [Google Scholar] [CrossRef]
- Chen, T.; Liu, W. Solvability of fractional boundary value problem with p-Laplacian via critical point theory. Bound. Value. Probl. 2016, 2016, 75. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chen, F.; An, Y. Existence of solutions for fractional differential equation with p-Laplacian through variational method. J. Appl. Anal. Comput. 2018, 8, 1778–1795. [Google Scholar]
- Bonanno, G.; Chinn, A. Existence of three solutions for a perturbed two-point boundary value problem. Appl. Math. Lett. 2010, 23, 807–811. [Google Scholar] [CrossRef] [Green Version]
- Candito, P.; Agui, G.D. Three solutions to a perturbed nonlinear discrete Dirichlet problem. J. Math. Anal. Appl. 2011, 375, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Afrouzi, G.A.; Chung, N.T.; Hadjian, A. Three solutions for a class of Neumann doubly eigenvalue boundary value systems driven by a p1,...,pn-Laplacian operator. Matematiche 2012, 67, 43–55. [Google Scholar]
- Heidarkhani, S.; Henderson, J. Multiple solutions for a nonlocal perturbed elliptic problem of p-Kirchhoff type. Comm. Appl. Nonlinear Anal. 2012, 19, 25–39. [Google Scholar]
- Heidarkhani, S.; Henderson, J. Critical point approaches to quasilinear second order differential equations depending on a parameter. Topol. Methods Nonlinear Anal. 2014, 44, 177–197. [Google Scholar] [CrossRef]
- Jiao, F.; Zhou, Y. Existence results for fractional boundary value problem via critical point theory. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2012, 22, 1250086. [Google Scholar] [CrossRef]
- Li, D.; Chen, F.; An, Y. Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory. Math. Meth. Appl. Sci. 2018, 41, 3197–3212. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear Functional Analysis and its Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1985; Volume II. [Google Scholar]
- Bonanno, G.; Marano, S.A. On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl. Anal. 2010, 89, 1–10. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamache, F.; Guefaifia, R.; Boulaaras, S.; Alharbi, A. Existence of Weak Solutions for a New Class of Fractional p-Laplacian Boundary Value Systems. Mathematics 2020, 8, 475. https://doi.org/10.3390/math8040475
Kamache F, Guefaifia R, Boulaaras S, Alharbi A. Existence of Weak Solutions for a New Class of Fractional p-Laplacian Boundary Value Systems. Mathematics. 2020; 8(4):475. https://doi.org/10.3390/math8040475
Chicago/Turabian StyleKamache, Fares, Rafik Guefaifia, Salah Boulaaras, and Asma Alharbi. 2020. "Existence of Weak Solutions for a New Class of Fractional p-Laplacian Boundary Value Systems" Mathematics 8, no. 4: 475. https://doi.org/10.3390/math8040475
APA StyleKamache, F., Guefaifia, R., Boulaaras, S., & Alharbi, A. (2020). Existence of Weak Solutions for a New Class of Fractional p-Laplacian Boundary Value Systems. Mathematics, 8(4), 475. https://doi.org/10.3390/math8040475