Coefficient Estimates for a Subclass of Bi-Univalent Functions Defined by q-Derivative Operator
Abstract
:1. Introduction
2. A Set of Main Results
3. Applications of the Main Result
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ismail, M.E.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesnik 2013, 65, 454–465. [Google Scholar]
- Aldweby, H.; Darus, M. On harmonic meromorphic functions associated with basic hypergeometric functions. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. ISRN Math. Anal. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Raghavendar, K.; Swaminathan, A. Close-to-convexity of basic hypergeometric functions using their Taylor coefficients. J. Math. Appl. 2012, 35, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. On a subclass of bi-univalent functions associated with the q-derivative operator. J. Math. Comput. Sci. 2019, 19, 58–64. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete-Szego problem associated with q-derivative operator. J. Phys. Conf. Ser. 2019, 1212, 012003. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. New subclass of analytic functions defined by q-differential operator with respect to k-symmetric points. Int. J. Math. Comput. Sci. 2019, 14, 761–773. [Google Scholar]
- Elhaddad, S.; Aldweby, H.; Darus, M. Some properties on a class of harmonic univalent functions defined by q-analogue of Ruscheweyh operator. J. Math. Anal. 2018, 9, 28–35. [Google Scholar]
- Elhaddad, S.; Darus, M. On meromorphic functions defined by a new operator containing the Mittag–Leffler function. Symmetry 2019, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Elhaddad, S.; Darus, M. On Fekete-Szegö problems for a certain subclass defined by q-analogue of Ruscheweyh operator. J. Phys. Conf. Ser. 2019, 1212, 012002. [Google Scholar] [CrossRef]
- Elhaddad, S.; Darus, M. On a subclass of harmonic univalent functions involving a new operator containing q-Mittag-Leffler function. Int. J. Math. Comput. Sci. 2019, 14, 833–847. [Google Scholar]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H.; Rehman, S.; Ahmad, B. Some applications of a new integral operator in q-Analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Hussain, S.; Mahmood, T.; Khan, S.; Darus, M. A new subclass of analytic functions defined by using Salagean q-differential operator. Mathematics 2019, 7, 458. [Google Scholar] [CrossRef] [Green Version]
- Purohit, S.D.; Raina, R.K. Certain subclass of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Purohit, S.D.; Raina, R.K. Fractional q-calculus and certain subclass of univalent analytic functions. Mathematica 2013, 55, 62–74. [Google Scholar]
- Alsoboh, A.; Darus, M. On Fekete–Szegö problems for certain subclasses of analytic functions defined by differential operator involving q-Ruscheweyh operator. J. Funct. Spaces 2020, 2020, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute heald at the University of Durham, Durham; July 1–20, 1979); Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in < 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-unvalent functions. Stud. Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma–Minda type. RACSAM 2018, 112, 1157–1168. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Xu, Q.-H.; Xiao, H.-G.; Srivastava, H.M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 2012, 218, 11461–11465. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altinkayab, S.; Yalcnc, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018, 32, 503–516. [Google Scholar] [CrossRef]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Srivastava, H.M. The second Hankel determinant for a certain class of bi-close-to-convex functions. Results Math. 2019, 74, 1–13. [Google Scholar] [CrossRef]
- Srivastava, H.M.; S. Altinkayab, S.; Yalcnc, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran J. Sci. Technol. Trans. Sci. 2019, 43, 1873. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Mogra, M.L. Applications of Ruscheweyh derivatives and Hadamard product to analytic functions. Int. J. Math. Math. Sci. 1999, 22, 795–805. [Google Scholar] [CrossRef]
- Shukla, S.L.; Kumar, V. Univalent functions defined by Ruscheweyh derivatives. Int. J. Math. Math. Sci. 1983, 6, 483–486. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, D. Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 2015, 23, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimates of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Magesh, N.; Yamini, J. Coefficient estimates for a certain general subclass of analytic and bi-univalent functions. Appl. Math. 2014, 5, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Cvetkovski, Z. Inequalities Theorems, Techniques and Selected Problems; Springer: Berlin, Germany, 2012. [Google Scholar]
- Milovanovic, G.V.; Rassias, M. Analytic Number Theory, Approximation Theory and Special Functions; In Honor of Hari M. Srivastava; Springer: Berlin, Germany, 2014. [Google Scholar]
- Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Inequalities Involving Functions and Their Integrals and Derivatives; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhaddad, S.; Darus, M. Coefficient Estimates for a Subclass of Bi-Univalent Functions Defined by q-Derivative Operator. Mathematics 2020, 8, 306. https://doi.org/10.3390/math8030306
Elhaddad S, Darus M. Coefficient Estimates for a Subclass of Bi-Univalent Functions Defined by q-Derivative Operator. Mathematics. 2020; 8(3):306. https://doi.org/10.3390/math8030306
Chicago/Turabian StyleElhaddad, Suhila, and Maslina Darus. 2020. "Coefficient Estimates for a Subclass of Bi-Univalent Functions Defined by q-Derivative Operator" Mathematics 8, no. 3: 306. https://doi.org/10.3390/math8030306
APA StyleElhaddad, S., & Darus, M. (2020). Coefficient Estimates for a Subclass of Bi-Univalent Functions Defined by q-Derivative Operator. Mathematics, 8(3), 306. https://doi.org/10.3390/math8030306