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Abstract: Recently, a number of features and properties of interest for a range of bi-univalent and
univalent analytic functions have been explored through systematic study, e.g., coefficient inequalities
and coefficient bounds. This study examines Sδ

q (ϑ, η, ρ, ν; ψ) as a novel general subclass of Σ which
comprises normalized analytic functions, as well as bi-univalent functions within ∆ as an open unit
disk. The study locates estimates for the |a2| and |a3| Taylor–Maclaurin coefficients in functions of
the class which is considered. Additionally, links with a number of previously established findings
are presented.

Keywords: analytic functions; univalent functions; bi-univalent functions; coefficient bounds and
coefficient estimates; principle of subordination; q-derivative operator
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1. Introduction

Geometric function theory research has provided analysis of a number of subclasses of A, as
a class of normalised analytic function, using a range of approaches. Q-calculus has been widely
applied in investigating a number of such subclasses within the open unit disk ∆. ∂q as a q-derivative
operator was initially applied by Ismail et al. [1] in studying a specific q-analogue within ∆ in the
starlike function class. Such q-operators were also approximated and their geometric properties
examined by Mohammed and Darus [2] for several analytic function subclasses within compact disks.
The definition of the q-operators involved was done through convolution normalised analytic and
q-hypergeometric functions, and revealed a number of notable findings reported in [3,4]. Raghavendar
and Swaminathan [5] studied basic q-close-to-convex function properties, while Aral et al. [6] identified
q-calculus applications within operator theory. In addition, fractional q-derivative and fractional
q-integral operators, among other q-calculus operators, have been applied in constructing a number of
analytic function subclasses, as in [7–21].

The function class is denoted by A which represented by the following form:

k(ξ) = ξ +
∞

∑
j=2

ajξ
j, (ξ ∈ ∆), (1)

that are analytic in the region ∆ = {ξ ∈ C : |ξ| < 1} and satisfy the following normalization conditions:

k(0) = 0 and k
′
(0) = 1.

In addition, let S be the subclass of A consisting of univalent function in ∆.
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For the two functions k(ξ) and h(ξ) analytic in ∆, we say that k(ξ) is subordinate to h(ξ), usually
denoted by k(ξ) ≺ h(ξ) (ξ ∈ ∆), if there exists a Schwarz function φ(ξ) within ∆ with φ(0) = 0 and
|φ(ξ)| < 1, (ξ ∈ ∆), such that k(ξ) = h(φ(ξ)), (ξ ∈ ∆).

Especially, if the function h is univalent within ∆, then the above mentioned subordination is
comparable to:

k ≺ h if and only if k(0) = h(0) and k(∆) ⊆ h(∆).

It should be noted here that Koebe one-quarter theorem as described by [22] stipulates that ∆
images in each univalent function k ∈ A have a disc with a 1/4 radius, meaning that each univalent
function k produces k−1 as its inverse, which is characterized as

k−1(k(ξ)) = ξ, (ξ ∈ ∆)

and

k−1(k(w)) = w, (| w |< r0(k); r0(k) ≥
1
4
),

where

χ(w) = k−1(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . . . (2)

A function k ∈ A is said to be bi-univalent in ∆ if both k and k−1 are univalent in ∆. Here,
Σ represents the bi-univalent function class which Equation (1) defines. Some of the examples of
functions within the class Σ are listed here as below (see Srivastava et al. [23]):

ξ

1− ξ
, − log(1− ξ),

1
2

log
(

1 + ξ

1− ξ

)
.

However, the well known Koebe function is not within the class Σ. Other common examples of
functions within the class S such as

ξ − ξ2

2
and

ξ

1− ξ2

are also not within the class Σ.
For a brief history of functions in the class Σ, see [24–27]. More recent studies inspired by

Srivastava et al.’s [23] ground-breaking investigations in this area examine coefficient bounds in a
range of bi-univalent function subclasses (as in e.g., [8,28–33]).

This study begins with definitions of the principal terms used and in-depth concepts for the
applications of q-calculus used. In this report, it is assumed that 0 < q < 1. Definitions are first given
for fractional q-calculus operators in a complex-valued function k(ξ), as follows:

Definition 1. Let 0 < q < 1. The q-number [j]q is defined by

[j]q =


1− qj

1− q
, j ∈ C;

∑m−1
n=0 qn = 1 + q + q2 + · · ·+ qm−1, j = m ∈ N.

Definition 2. Let 0 < q < 1. The q-factorial [j]q! is defined by
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[j]q! =

{
[j]q[j− 1]q . . . . . . [1]q, j = 1, 2, . . . ;
1, j = 0.

(3)

Definition 3. (see [34,35]) Let k ∈ A and 0 < q < 1. The q-derivative operator of a function k is defined by

∂qk(ξ) =


k(qξ)− k(ξ)
(q− 1)ξ

, ξ 6= 0;

k′(ξ), ξ = 0.
(4)

We note from Definition 3 that

lim
q→1

(∂qk)(ξ) = lim
q→1

k(ξq)− k(ξ)
(q− 1)ξ

= k′(ξ).

From Equations (1) and (4), we get

∂qk(ξ) = 1 +
∞

∑
j=2

[j]qajξ
j−1.

In 2014, Aldweby and Darus [7] introduced the q- analogue of Ruscheweyh OperatorRδ
q by

Rδ
qk(ξ) = ξ +

∞

∑
j=2

[j + δ− 1]q!
[δ]q![j− 1]q!

ajξ
j,

where δ > −1 and [j]q! given by Equation (3).

Moreover, as q −→ 1 we have

lim
q−→1

Rδ
qk(ξ) = ξ + lim

q−→1

[
∞

∑
j=2

[j + δ− 1]q!
[δ]q![j− 1]q!

ajξ
j

]

= ξ +
∞

∑
j=2

(j + δ− 1)!
(δ)!(j− 1)!

ajξ
j

= Rδk(ξ),

where Rδk(ξ) is Ruscheweyh differential operator which was introduced in [36] and a number of
authors have studied it before, see for instance [37,38].

The aim of the present work is to introduce Sδ
q (ϑ, η, ρ, ν; ψ) as a general subclass of Σ as a class

of bi-univalent functions. Within this, estimates are derived for initial coefficients |a2| and |a3| for
functions within the general subclass. Below, various bi-univalent general subclasses are introduced.

Definition 4. Let δ > −1, ϑ ∈ C/{0}, 0 ≤ η ≤ 1, 0 ≤ ρ ≤ 1 and 0 ≤ ν ≤ 1. A function k ∈ Σ is in the
class Sδ

q (ϑ, η, ρ, ν; ψ), if it is satisfying the following subordination conditions :

1 +
1
ϑ

[
ξ∂q(Rδ

qk(ξ)) + ηξ2∂q(∂q(Rδ
qk(ξ)))

(1− ρ)ξ + ρ(1− ν)Rδ
qk(ξ) + νξ∂q(Rδ

qk(ξ))
− 1

[1 + ν(1− ρ)]

]
≺ ψ(ξ), (5)

and
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1 +
1
ϑ

[
w∂q(Rδ

qχ(w)) + ηw2∂q(∂q(Rδ
qχ(w)))

(1− ρ)w + ρ(1− ν)Rδ
qχ(w) + νw∂q(Rδ

qχ(w))
− 1

[1 + ν(1− ρ)]

]
≺ ψ(w), (6)

where the function χ is given by Equation (2).

Remark 1. It can clearly be seen that when parameters ϑ, η, ρ, δ, q and ν are specialised, this produces a number
of established Σ subclasses, and there are a number of recent works which examine these. Examples are provided
for these subclasses.

Example 1. Let δ = 0 and q → 1. Then the class Sδ
q (ϑ, η, ρ, ν; ψ) reduces to the class SΣ(ϑ, η, ρ, ν; ψ)

examined by Srivastava et al. [28] which is characterized by

1 +
1
ϑ

[
ξk′(ξ) + ηξ2k′′(ξ)

(1− ρ)ξ + ρ(1− ν)k(ξ) + νξk′(ξ)
− 1

1 + ν(1− ρ)

]
≺ ψ(ξ),

and

1 +
1
ϑ

[
wχ′(w) + ηw2χ′′(w)

(1− ρ)w + ρ(1− ν)χ(w) + νwχ′(w)
− 1

1 + ν(1− ρ)

]
≺ ψ(w),

where χ is defined by Equation (2).

Example 2. Let δ = 0, ρ = 0, ν = 0 and q→ 1. Then the class Sδ
q (ϑ, η, ρ, ν; ψ) reduces to the class Σ(ϑ, η; ψ)

studied by Srivastava and Bansal [39] that is defined by way of

1 +
1
ϑ

[
k′(ξ)− ηξk′′(ξ)− 1

]
≺ ψ(ξ),

and

1 +
1
ϑ

[
χ′(w)− ηwχ′′(w)− 1

]
≺ ψ(w),

where χ is defined by Equation (2).

Example 3. Let δ = 0, ρ = 1, ν = η and q → 1. Then the class Sδ
q (ϑ, η, ρ, ν; ψ) reduces to the class

SΣ(ϑ, ν; ψ) scrutinized by Deniz [40] that is defined by way of

1 +
1
ϑ

[
ξk′(ξ) + νξ2k′′(ξ)

(1− ν)k(ξ) + νξk′(ξ)
− 1
]
≺ ψ(ξ),

and

1 +
1
ϑ

[
wχ′(w) + νw2χ′′(w)

(1− ν)χ(w) + νwχ′(w)
− 1
]
≺ ψ(w),

where χ is defined by Equation (2).

Example 4. Let δ = 0, ν = 0, η = 0 and q → 1. Then the class Sδ
q (ϑ, η, ρ, ν; ψ) reduces to the class

SΣ(ϑ, ρ; ψ) studied by Peng et al. [41] which is defined as

1 +
1
ϑ

[
ξk′(ξ)

(1− ρ)ξ + ρk(ξ)
− 1
]
≺ ψ(ξ),

and

1 +
1
ϑ

[
wχ′(w)

(1− ρ)w + ρχ(w)
− 1
]
≺ ψ(w),
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where χ is defined by Equation (2).

Example 5. Let δ = 0, ν = 0, η = 0, ϑ = 1 and q → 1. Then the class Sδ
q (ϑ, η, ρ, ν; ψ) reduces to the class

SΣ(ρ; ψ) examined by Magesh and Yamini [42] which is characterized as

ξk′(ξ)
(1− ρ)ξ + ρk(ξ)

≺ ψ(ξ),

and

wχ′(w)

(1− ρ)w + ρχ(w)
≺ ψ(w),

where χ is defined by Equation (2).

In order to prove our main results, we need the subsequent lemma.

Lemma 1. (see [43]) Let p ∈ P , then

bj ≤ 2 (j ∈ N),

where P is the family of all analytic functions p in ∆, for which

Re(p(ξ)) > 0 (ξ ∈ ∆),

where

p(ξ) = 1 + b1ξ + b2ξ2 + . . . . (ξ ∈ ∆).

Additionally, some useful work associated with inequalities and their properties can be read
in [44–47].

2. A Set of Main Results

This section starts by establishing estimates for Sδ
q (ϑ, η, ρ, ν; ψ) class function for coefficients |a2|

and |a3|.

Let ψ be an analytic function with Re(ψ(ξ)) > 0 within ∆, satisfying ψ(0) = 1, ψ′(0) > 0, and ψ(∆) is
symmetric with respect to the real axis. Such a function has a form:

ψ(ξ) = 1 + B1ξ + B2ξ2 + B3ξ3 + B4ξ4 + . . . . (B1 > 0; ξ ∈ ∆). (7)

Theorem 1. Let k(ξ) ∈ Sδ
q (ϑ, η, ρ, ν; ψ) be of the form in Equation (1). Then

|a2| ≤

√
2[2]q |ϑ| B

3
2
1 (ρν− ν− 1)2√∣∣ϑB2

1 [δ + 1]q(ρν− ν− 1)Ψ(η, ρ, ν, δ, q) + 2[2]q(B1 − B2)Θ2(η, ρ, ν, δ, q)
∣∣ , (8)

and

|a3| ≤ B1 |ϑ| (ρν− ν− 1)2
(

B1 |ϑ| (ρν− ν− 1)2

Θ2(η, ρ, ν, δ, q)
+

[2]q
|Υ(η, ρ, ν, δ, q)|

)
, (9)

where

Θ(η, ρ, ν, δ, q) = [δ + 1]q
(
[2]q − qρν + [2]qην− [2]qρην− ρ + [2]qη

)
, (10)



Mathematics 2020, 8, 306 6 of 14

Υ(η, ρ, ν, δ, q) = [δ + 1]q[δ + 2]q([3]q − q[2]qρν + [2]q[3]qην − [2]q[3]qρην − ρ + [2]q[3]qη), (11)

and

Ψ(η, ρ, ν, δ, q) = −2[3]q[δ + 2]q +
(

4[3]q[δ + 2]q − 4[2]2q[δ + 1]q
)

ρν

+
(

2[2]3q[δ + 1]q − 4[2]q[3]q[δ + 2]q
)

ην +
(
2q[2]q[δ + 1]q − 2q[2]q[δ + 2]q

)
ρ2ν2

+ 2[2]2q[δ + 1]qρη − 2[2]q[δ + 1]qρ2 −
(
2[2]q(q− 1)[δ + 1]q + 2[δ + 2]q

)
ρ2ν

+
(

2[2]3q[δ + 1]q − 2[2]q[3]q[δ + 2]q
)

ην2 +
(

2[2]2q[δ + 1]q − 2[2]q[3]q[δ + 2]q
)

ρ2ην2

+
(
4[2]q[3]q[δ + 2]q − 2[2]q(1 + [2]q)[δ + 1]q

)
ρην2 + 4[2]q[3]q[δ + 2]qρην

+
(

2[2]3q[δ + 1]q − 2[3]q[δ + 2]q
)

ν− 2[2]2q[δ + 1]qρ2ην− 2[2]q[3]q[δ + 2]qη

+
(

2[2]2q[δ + 1]q + 2[δ + 2]q
)

ρ +
(

2q[2]2q[δ + 1]q − 2q[2]q[δ + 2]q
)

ρν2. (12)

Proof. Let k ∈ Sδ
q (ϑ, η, ρ, ν; ψ) and χ = k−1. Then there are analytic functions u, v : ∆ → ∆ with

u(0) = v(0) = 0, satisfying the following conditions:

1 +
1
ϑ

[
ξ∂q(Rδ

qk(ξ)) + ηξ2∂q(∂q(Rδ
qk(ξ)))

(1− ρ)ξ + ρ(1− ν)Rδ
qk(ξ) + νξ∂q(Rδ

qk(ξ))
− 1

[1 + ν(1− ρ)]

]
= ψ(u(ξ)), (ξ ∈ ∆), (13)

and

1 +
1
ϑ

[
w∂q(Rδ

qχ(w)) + ηw2∂q(∂q(Rδ
qχ(w)))

(1− ρ)w + ρ(1− ν)Rδ
qχ(w) + νw∂q(Rδ

qχ(w))
− 1

[1 + ν(1− ρ)]

]
= ψ(v(w)), (w ∈ ∆). (14)

Define the functions p and h by

p(ξ) =
1 + u(ξ)
1− u(ξ)

= 1 + p1ξ + p2ξ2 + p3ξ3 + . . . , (15)

and

h(ξ) =
1 + v(ξ)
1− v(ξ)

= 1 + h1ξ + h2ξ2 + h3ξ3 + . . . . (16)

Then p and h are analytic within ∆ with p(0) = h(0) = 1. By reason of u, v : ∆→ ∆, the functions
p and h has a positive real part in ∆. Thus, by using Lemma 1, we have∣∣pj

∣∣ ≤ 2 and
∣∣hj
∣∣ ≤ 2, (j ∈ N = {1, 2, 3, . . . }).

It follows from Equations (15) and (16) that

u(ξ) =
p(ξ)− 1
p(ξ) + 1

=
1
2

[
p1ξ +

(
p2 −

p2
1

2

)
ξ2

]
+ . . . , (ξ ∈ ∆), (17)

and

v(ξ) =
h(ξ)− 1
h(ξ) + 1

=
1
2

[
h1ξ +

(
h2 −

h2
1

2

)
ξ2

]
+ . . . , (ξ ∈ ∆). (18)

Clearly, substituting Equations (17) and (18) into Equations (13) and (14), respectively, in the event
that we make use of Equation (7), we get



Mathematics 2020, 8, 306 7 of 14

1 +
1
ϑ

[
ξ∂q(Rδ

qk(ξ)) + ηξ2∂q(∂q(Rδ
qk(ξ)))

(1− ρ)ξ + ρ(1− ν)Rδ
qk(ξ) + νξ∂q(Rδ

qk(ξ))
− 1

[1 + ν(1− ρ)]

]
=

ψ

(
p(ξ)− 1
p(ξ) + 1

)
= 1 +

B1 p1

2
ξ +

[
1
2

(
p2 −

p2
1

2

)
B1 +

1
4

p2
1B2

]
ξ2 + . . . , (19)

and

1 +
1
ϑ

[
w∂q(Rδ

qχ(w)) + ηw2∂q(∂q(Rδ
qχ(w)))

(1− ρ)w + ρ(1− ν)Rδ
qχ(w) + νw∂q(Rδ

qχ(w))
− 1

[1 + ν(1− ρ)]

]
=

ψ

(
h(ξ)− 1
h(ξ) + 1

)
= 1 +

B1h1

2
w +

[
1
2

(
h2 −

h2
1

2

)
B1 +

1
4

h2
1B2

]
w2 + . . . . (20)

Moreover,

1 +
1
ϑ

[
ξ∂q(Rδ

qk(ξ)) + ηξ2∂q(∂q(Rδ
qk(ξ)))

(1− ρ)ξ + ρ(1− ν)Rδ
qk(ξ) + νξ∂q(Rδ

qk(ξ))
− 1

[1 + ν(1− ρ)]

]
=

1 +

{
[δ + 1]q

(
[2]q − qρν + [2]qην− [2]qρην− ρ + [2]qη

)
ϑ(ρν− ν− 1)2

}
a2ξ+{

[δ + 1]q[δ + 2]q
(
[3]q − q[2]qρν + [2]q[3]qην− [2]q[3]qρην− ρ + [2]q[3]qη

)
ϑ[2]q(ρν− ν− 1)2 a3−

[δ + 1]2q(ρν− [2]qν− ρ)
(
[2]q − qρν + [2]qην− [2]qρην− ρ + [2]qη

)
ϑ(ρν− ν− 1)3 a2

2

}
ξ2 + . . . , (21)

and

1 +
1
ϑ

[
w∂q(Rδ

qχ(w)) + ηw2∂q(∂q(Rδ
qχ(w)))

(1− ρ)w + ρ(1− ν)Rδ
qχ(w) + νw∂q(Rδ

qχ(w))
− 1

[1 + ν(1− ρ)]

]
=

1−
{
[δ + 1]q

(
[2]q − qρν + [2]qην− [2]qρην− ρ + [2]qη

)
ϑ(ρν− ν− 1)2

}
a2w+{

[δ + 1]q[δ + 2]q
(
[3]q − q[2]qρν + [2]q[3]qην− [2]q[3]qρην− ρ + [2]q[3]qη

)
ϑ[2]q(ρν− ν− 1)2 (2a2

2 − a3)−

[δ + 1]2q(ρν− [2]qν− ρ)
(
[2]q − qρν + [2]qην− [2]qρην− ρ + [2]qη

)
ϑ(ρν− ν− 1)3 a2

2

}
w2 + . . . . . (22)

Now, equating the coefficients in Equations (19)–(22), we get

[δ + 1]q
(
[2]q − qρν + [2]qην− [2]qρην− ρ + [2]qη

)
ϑ(ρν− ν− 1)2 a2 =

B1 p1

2
, (23)

and
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[δ + 1]q[δ + 2]q
(
[3]q − q[2]qρν + [2]q[3]qην− [2]q[3]qρην− ρ + [2]q[3]qη

)
ϑ[2]q(ρν− ν− 1)2 a3

−
[δ + 1]2q(ρν− [2]qν− ρ)

(
[2]q − qρν + [2]qην− [2]qρην− ρ + [2]qη

)
ϑ(ρν− ν− 1)3 a2

2

=
1
2

(
p2 −

p2
1

2

)
B1 +

1
4

p2
1B2. (24)

Moreover, we have

−
[δ + 1]q

(
[2]q − qρν + [2]qην− [2]qρην− ρ + [2]qη

)
ϑ(ρν− ν− 1)2 a2 =

B1h1

2
, (25)

and

[δ + 1]q[δ + 2]q
(
[3]q − q[2]qρν + [2]q[3]qην− [2]q[3]qρην− ρ + [2]q[3]qη

)
ϑ[2]q(ρν− ν− 1)2 (2a2

2 − a3)

−
[δ + 1]2q(ρν− [2]qν− ρ)

(
[2]q − qρν + [2]qην− [2]qρην− ρ + [2]qη

)
ϑ(ρν− ν− 1)3 a2

2

=
1
2

(
h2 −

h2
1

2

)
B1 +

1
4

h2
1B2. (26)

From Equations (23) and (25), we find that

p1 = −h1. (27)

By adding Equations (24) and (26), and then using Equation (27), we obtain

[δ + 1]q
ϑ[2]q(ρν− ν− 1)3

{
− 2[3]q[δ + 2]q +

(
4[3]q[δ + 2]q − 4[2]2q[δ + 1]q

)
ρν

+
(

2[2]3q[δ + 1]q − 4[2]q[3]q[δ + 2]q
)

ην +
(
2q[2]q[δ + 1]q − 2q[2]q[δ + 2]q

)
ρ2ν2

+ 2[2]2q[δ + 1]qρη − 2[2]q[δ + 1]qρ2 −
(
2[2]q(q− 1)[δ + 1]q + 2[δ + 2]q

)
ρ2ν

+
(

2[2]3q[δ + 1]q − 2[2]q[3]q[δ + 2]q
)

ην2 +
(

2[2]2q[δ + 1]q − 2[2]q[3]q[δ + 2]q
)

ρ2ην2

+
(
4[2]q[3]q[δ + 2]q − 2[2]q(1 + [2]q)[δ + 1]q

)
ρην2 + 4[2]q[3]q[δ + 2]qρην

+
(

2[2]3q[δ + 1]q − 2[3]q[δ + 2]q
)

ν− 2[2]2q[δ + 1]qρ2ην− 2[2]q[3]q[δ + 2]qη

+
(

2[2]2q[δ + 1]q + 2[δ + 2]q
)

ρ +
(

2q[2]2q[δ + 1]q − 2q[2]q[δ + 2]q
)

ρν2
}

a2
2

=
p2

1
2
(B2 − B1) +

B1

2
(p2 + h2). (28)

For the purpose of brevity, we will utilize the notations given in Equations (10)–(12). Now, making
use of the notations defined above and combining Equations (23) and (28), we get

a2
2 =

[2]qϑ2B3
1(ρν− ν− 1)4(p2 + h2)

2
[
ϑB2

1 [δ + 1]q(ρν− ν− 1)Ψ(η, ρ, ν, δ, q) + 2[2]q(B1 − B2)Θ2(η, ρ, ν, δ, q)
] . (29)

Applying Lemma 1 to the coefficients p2 and h2, we find that
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a2
2 ≤

2[2]q |ϑ|2 B3
1(ρν− ν− 1)4∣∣ϑB2

1 [δ + 1]q(ρν− ν− 1)Ψ(η, ρ, ν, δ, q) + 2[2]q(B1 − B2)Θ2(η, ρ, ν, δ, q)
∣∣ , (30)

so that

|a2| ≤

√
2[2]q |ϑ| B

3
2
1 (ρν− ν− 1)2√∣∣ϑB2

1 [δ + 1]q(ρν− ν− 1)Ψ(η, ρ, ν, δ, q) + 2[2]q(B1 − B2)Θ2(η, ρ, ν, δ, q)
∣∣ , (31)

where Ψ(η, ρ, ν, δ, q) and Θ(η, ρ, ν, δ, q) are given by Equations (10) and (12), respectively.

Similarly, upon subtracting Equation (26) from Equation (24) and then using Equation (27), we get

Υ(η, ρ, ν, δ, q)
[2]qϑ(ρν− ν− 1)2 (a3 − a2

2) =
B1

4
(p2 − h2), (32)

where Υ(η, ρ, ν, δ, q) is defined by Equation (11). It follows from Equations (23) and (32) that

a3 =
B2

1ϑ2(ρν− ν− 1)4 p2
1

4Θ2(η, ρ, ν, δ, q)
+

[2]qB1ϑ(ρν− ν− 1)2(p2 − h2)

4Υ(η, ρ, ν, δ, q)
. (33)

Finally, applying the Lemma 1 once more for the coefficients p1, p2 and h2, we have

|a3| ≤ B1 |ϑ| (ρν− ν− 1)2
(

B1 |ϑ| (ρν− ν− 1)2

Θ2(η, ρ, ν, δ, q)
+

[2]q
|Υ(η, ρ, ν, δ, q)|

)
. (34)

This completes the proof of Theorem 1.

3. Applications of the Main Result

This part of the paper presents certain distinctive cases within the broader results, provided as
corollaries. First of all, by letting

ψ(ξ) =
1 + Cξ

1 + Dξ
= 1 + (C− D)ξ + D(D− C)ξ2 + . . . (−1 ≤ D < C ≤ 1),

in Definition 4 of the class Sδ
q (ϑ, η, ρ, ν; ψ), we obtain a new class S1,δ

q (ϑ, η, ρ, ν; C, D) given by
Definition 5.

Definition 5. Let δ > −1, ϑ ∈ C/{0}, 0 ≤ η ≤ 1, 0 ≤ ρ ≤ 1 and 0 ≤ ν ≤ 1. A function k ∈ Σ is said to be
in the class S1,δ

q (ϑ, η, ρ, ν; C, D), if each of the following subordination condition holds true:

1 +
1
ϑ

[
ξ∂q(Rδ

qk(ξ)) + ηξ2∂q(∂q(Rδ
qk(ξ)))

(1− ρ)ξ + ρ(1− ν)Rδ
qk(ξ) + νξ∂q(Rδ

qk(ξ))
− 1

[1 + ν(1− ρ)]

]
≺ 1 + Cξ

1 + Dξ
,

and

1 +
1
ϑ

[
w∂q(Rδ

qχ(w)) + ηw2∂q(∂q(Rδ
qχ(w)))

(1− ρ)w + ρ(1− ν)Rδ
qχ(w) + νw∂q(Rδ

qχ(w))
− 1

[1 + ν(1− ρ)]

]
≺ 1 + Cw

1 + Dw
,

where the function χ is given by Equation (2).

Utilizing the parameters setting of Definition 5 within the Theorem 1, we obtain the
following result.

Corollary 1. Let k(ξ) ∈ S1,δ
q (ϑ, η, ρ, ν; C, D) be of the form in Equation (1). Then
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|a2| ≤

√
2[2]q |ϑ| (C− D)(ρν− ν− 1)2√∣∣ϑ(C− D)[δ + 1]q(ρν− ν− 1)Ψ(η, ρ, ν, δ, q) + 2[2]q(1 + D)Θ2(η, ρ, ν, δ, q)

∣∣ ,
and

|a3| ≤ (C− D) |ϑ| (ρν− ν− 1)2
(
(C− D) |ϑ| (ρν− ν− 1)2

Θ2(η, ρ, ν, δ, q)
+

[2]q
|Υ(η, ρ, ν, δ, q)|

)
,

where Θ(η, ρ, ν, δ, q), Υ(η, ρ, ν, δ, q) and Ψ(η, ρ, ν, δ, q) are given by Equations (10)–(12).

Next, if we set

ψ(ξ) =

(
1 + ξ

1− ξ

)σ

= 1 + 2σξ + 2σ2ξ2 + . . . (0 < σ ≤ 1)

in Definition 4 of the class Sδ
q (ϑ, η, ρ, ν; ψ), we get a new class S2,δ

q (ϑ, η, ρ, ν; σ) given as

Definition 6. Let δ > −1, ϑ ∈ C/{0}, 0 ≤ η ≤ 1, 0 ≤ ρ ≤ 1 and 0 ≤ ν ≤ 1. A function k ∈ Σ is said to be
in the class S2,δ

q (ϑ, η, ρ, ν; σ), if each of the following subordination condition holds true:

∣∣∣∣∣arg

{
1 +

1
ϑ

[
ξ∂q(Rδ

qk(ξ)) + ηξ2∂q(∂q(Rδ
qk(ξ)))

(1− ρ)ξ + ρ(1− ν)Rδ
qk(ξ) + νξ∂q(Rδ

qk(ξ))
− 1

[1 + ν(1− ρ)]

]}∣∣∣∣∣ < σπ

2
,

and

∣∣∣∣∣arg

{
1 +

1
ϑ

[
w∂q(Rδ

qχ(w)) + ηw2∂q(∂q(Rδ
qχ(w)))

(1− ρ)w + ρ(1− ν)Rδ
qχ(w) + νw∂q(Rδ

qχ(w))
− 1

[1 + ν(1− ρ)]

]}∣∣∣∣∣ < σπ

2
,

where the function χ is given by Equation (2).

Utilizing the parameters setting of Definition 6 within the Theorem 1, we obtain the
following result

Corollary 2. Let k(ξ) ∈ S2,δ
q (ϑ, η, ρ, ν; σ) be of the form in Equation (1). Then

|a2| ≤
2
√

2[2]q |ϑ| σ(ρν− ν− 1)2√∣∣2ϑσ[δ + 1]q(ρν− ν− 1)Ψ(η, ρ, ν, δ, q) + 2[2]q(1− σ)Θ2(η, ρ, ν, δ, q)
∣∣ ,

and

|a3| ≤ 2σ |ϑ| (ρν− ν− 1)2
(

2σ |ϑ| (ρν− ν− 1)2

Θ2(η, ρ, ν, δ, q)
+

[2]q
|Υ(η, ρ, ν, δ, q)|

)
,

where Θ(η, ρ, ν, δ, q), Υ(η, ρ, ν, δ, q) and Ψ(η, ρ, ν, δ, q) are given by Equations (10)–(12).

Finally, if we set

ψ(ξ) =
1 + (1− 2α)ξ

1− ξ
= 1 + 2(1− α)ξ + 2(1− α)ξ2 + . . . (0 < α ≤ 1),

in Definition 4 of the class Sδ
q (ϑ, η, ρ, ν; ψ), we get a new class S3,δ

q (ϑ, η, ρ, ν; α) given as
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Definition 7. Let δ > −1, ϑ ∈ C/{0}, 0 ≤ η ≤ 1, 0 ≤ ρ ≤ 1 and 0 ≤ ν ≤ 1. A function k ∈ Σ is said to be
in the class S3,δ

q (ϑ, η, ρ, ν; α), if each of the following subordination condition holds true:

Re

{
1 +

1
ϑ

[
ξ∂q(Rδ

qk(ξ)) + ηξ2∂q(∂q(Rδ
qk(ξ)))

(1− ρ)ξ + ρ(1− ν)Rδ
qk(ξ) + νξ∂q(Rδ

qk(ξ))
− 1

[1 + ν(1− ρ)]

]}
> α,

and

Re

{
1 +

1
ϑ

[
w∂q(Rδ

qχ(w)) + ηw2∂q(∂q(Rδ
qχ(w)))

(1− ρ)w + ρ(1− ν)Rδ
qχ(w) + νw∂q(Rδ

qχ(w))
− 1

[1 + ν(1− ρ)]

]}
> α,

where the function χ is given by Equation (2).

Utilizing the parameter setting of Definition 7 within Theorem 1, we obtain the following result

Corollary 3. Let k(ξ) ∈ S3,δ
q (ϑ, η, ρ, ν; α) be of the form in Equation (1). Then

|a2| ≤
2
√
[2]q |ϑ| (1− α)(ρν− ν− 1)2√∣∣ϑB2

1 [δ + 1]q(ρν− ν− 1)Ψ(η, ρ, ν, δ, q)
∣∣ ,

and

|a3| ≤ 2(1− α) |ϑ| (ρν− ν− 1)2
(

2(1− α) |ϑ| (ρν− ν− 1)2

Θ2(η, ρ, ν, δ, q)
+

[2]q
|Υ(η, ρ, ν, δ, q)|

)
,

where Θ(η, ρ, ν, δ, q), Υ(η, ρ, ν, δ, q) and Ψ(η, ρ, ν, δ, q) are given by Equations (10)–(12).

Remark 2. Taking δ = 0 and q→ 1 in Theorem 1, we obtain the following result.

Corollary 4 ( [28]). Let k(ξ) ∈ SΣ(ϑ, η, ρ, ν; ψ) be of the form in Equation (1). Then

|a2| ≤
|ϑ| B

3
2
1 (ρν− ν− 1)2√∣∣ϑB2

1(ρν− ν− 1)Ψ(η, ρ, ν) + (B1 − B2)Θ2(η, ρ, ν)
∣∣ ,

and

|a3| ≤ B1 |ϑ| (ρν− ν− 1)2
(

B1 |ϑ| (ρν− ν− 1)2

Θ2(η, ρ, ν)
+

1
|Υ(η, ρ, ν)|

)
,

where

Θ(η, ρ, ν) = 2− ρν + 2ην− 2ηρν− ρ + 2η,

Υ(η, ρ, ν) = 3− 2ρν + 6ην− 6ηρν− ρ + 6η,

and

Ψ(η, ρ, ν) = −3 + 2ρν− 8ην− ρ2ν2 + 2ρη − ρ2 − ρ2ν− 2ην2 + 6ρην2

− 4ρ2ην2 + 12ρην + ν− 2ρ2ην + 3ρ− 6η,

where the class SΣ(ϑ, η, ρ, ν; ψ) is defined in Example 1.

Remark 3. Setting ρ = ν = δ = 0 and q→ 1 in Theorem 1, we get the following corollary



Mathematics 2020, 8, 306 12 of 14

Corollary 5 ([39]). Let k(ξ) ∈ Σ(ϑ, η; ψ) be of the form in Equation (1). Then

|a2| ≤
|ϑ| B

3
2
1√∣∣3ϑB2

1(1 + 2η) + 4(B1 − B2)(1 + η)2
∣∣ ,

and

|a3| ≤ B1 |ϑ|
(

B1 |ϑ|
4(1 + η)2 +

1
3(1 + 2η)

)
,

where the class Σ(ϑ, η; ψ) is defined in Example 2.

4. Conclusions

The q-calculus is a wide field and is applicable to many areas of physics and mathematics
and, as well, to other areas, for example, in differential equations, the theory of special functions,
analytic number theory, combinatorics, quantum theory, quantum group, numerical analysis, special
polynomials, operator theory and other related theories. This paper principally aims to derive the two
initial Taylor–Maclaurin coefficient estimates of functions within the novel subclass Sδ

q (ϑ, η, ρ, ν; ψ)

for analytic/bi-univalent functions within ∆ as an open unit disk. This is achieved by using the
Ruscheweyh q-calculus operator. Further, using corollaries and consequences, as discussed earlier
through appropriate specialisation of the δ, ρ, η, ν and q parameters, the paper also demonstrates that
the findings here can enhance and generalise some work recently published.
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