On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals
Abstract
:1. Introduction
2. Preliminaries
3. 2-Variables Konhauser Matrix Polynomials
- i.
- ii.
- Letting and in (20), we get the 2-variables analogue of Laguerre’s matrix polynomials as follows:
- iii.
- iv.
- v.
3.1. Hypergeometric Representation
3.2. Generating Matrix Relations for the 2-Variables of Konhauser Matrix Polynomials
3.3. Some Properties of the 2-Variables Konhauser Matrix Polynomials
4. Fractional Integrals of the 2-Variable Konhauser Matrix Polynomials
Author Contributions
Funding
Conflicts of Interest
References
- Konhauser, J.D.E. Biorthogonal polynomials suggested by the Laguerre polynomials. Pac. J. Math. 1967, 21, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, L. A note on Certain Biorthogonal Polynomials. Pac. J. Math. 1968, 24, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Rainville, E.D. Special Functions; Macmillan: New York, NY, USA; Chelsea Publishing Co.: Bronx, NY, USA, 1997. [Google Scholar]
- Spencer, L.; Fano, U. Penetration and diffusion of X-rays, Calculation of spatial distribution by polynomial expansion. J. Res. Nat. Bur. Standards 1951, 46, 446–461. [Google Scholar] [CrossRef]
- Preiser, S. An investigation of biorthogonal Polynomials derivable from ordinary differential equation of the third order. J. Math. Anal. Appl. 1962, 4, 38–64. [Google Scholar] [CrossRef] [Green Version]
- Constantine, G.; Muirhead, R.J. Partial differential equations for hypergeometric functions of two argument matrix. J. Multivariate Anal. 1972, 3, 332–338. [Google Scholar] [CrossRef] [Green Version]
- James, T. Special Functions of Matrix and Single Argument in Statistics. In Theory and Applications of Special Functions; Askey, R.A., Ed.; Academic Press: New York, NY, USA, 1975; pp. 497–520. [Google Scholar]
- Jódar, L.; Company, R.; Navarro, E. Laguerre matrix polynomials and systems of second-order differential equations. Appl. Numer. Math. 1994, 15, 53–63. [Google Scholar] [CrossRef]
- Jódar, L.; Company, R.; Ponsoda, E. Orthogonal matrix polynomials and systems of second order differential equations. Diff. Equ. Dyn. Syst. 1995, 3, 269–288. [Google Scholar]
- Jódar, L.; Company, R. Hermite matrix polynomials and second order differential equations. Approx. Theory Appl. 1996, 12, 20–30. [Google Scholar]
- Varma, S.; Çekim, B.; Taşdelen, F. Konhauser matrix polynomials. Ars. Combin. 2011, 100, 193–204. [Google Scholar]
- Erkuş-Duman, E.; Çekim, B. New generating functions for Konhauser matrix polynomials. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014, 63, 35–41. [Google Scholar]
- Varma, S.; Taşdelen, F. Some properties of Konhauser matrix polynomials. Gazi Univ. J. Sci. 2016, 29, 703–709. [Google Scholar]
- Shehata, A. Some relations on Konhauser matrix polynomials. Miskolc Math. Notes. 2016, 17, 605–633. [Google Scholar] [CrossRef]
- Shehata, A. Certain generating relations of Konhauser matrix polynomials from the view point of Lie algebra method. Univ. Politech. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 123–136. [Google Scholar]
- Shehata, A. Certain properties of Konhauser matrix polynomials via Lie algebra technique. Boletín de la Sociedad Matemática Mexicana 2019. [Google Scholar] [CrossRef]
- Shehata, A. A note on Konhauser matrix polynomials. Palestine J. Math. 2020, 9, 549–556. [Google Scholar]
- Bin-Saad, M.G.; Mohsen, F.B.F. Quasi-monomiality and operational identities for Laguerre-Konhauser-type matrix polynomials and their applications. Acta Comment. Univ. Tartuensis Math. 2018, 22, 13–22. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Bakhet, A.; Hidan, M.; Abdalla, M. Two Variables Shivley’s Matrix Polynomials. Symmetry 2019, 11, 151. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Hassan, N.A.M. 2-variables Laguerre matrix polynomials and Lie-algebraic techniques. J. Phys. A Math. Theor. 2010, 43, 235204. [Google Scholar] [CrossRef]
- Batahan, R.S. A new extension of Hermite matrix polynomials and its applications. Lin. Algebra. Appl. 2006, 419, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, W.A.; Haroon, H. Some expansions for a class of generalized Humbert matrix polynomials. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2019, 113, 3619–3634. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Raza, N. 2-variable generalized Hermite matrix polynomials and Lie algebra representation. Rep. Math. Phys. 2010, 66, 159–174. [Google Scholar] [CrossRef]
- Khan, S.; Al-Gonah, A. Multi-variable Hermite matrix polynomials: Properties and applications. J. Math. Anal. Appl. 2014, 412, 222–235. [Google Scholar] [CrossRef]
- Kahmmash, G.S. A study of a two variables Gegenbauer matrix polynomials and second order matrix partial differential equations. Int. J. Math. Anal. 2008, 2, 807–821. [Google Scholar]
- Kargin, L.; Kurt, V. Chebyshev-type matrix polynomials and integral transforms. Hacett. J. Math. Stat. 2015, 44, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M. Special matrix functions: Characteristics, achievements and future directions. Linear Multilinear Algebra 2020, 68, 1–28. [Google Scholar] [CrossRef]
- Bakhet, A.; Jiao, Y.; He, F. On the Wright hypergeometric matrix functions and their fractional calculus. Integr. Transf. Spec. Funct. 2019, 30, 138–156. [Google Scholar] [CrossRef]
- Cortés, J.C.; Jódar, L.; Sols, F.J.; Ku Carrillo, R. Infinite matrix products and the representation of the gamma matrix function. Abstr. Appl. Anal. 2015, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jódar, L.; Cortés, J.C. Some properties of Gamma and Beta matrix functions. Appl. Math. Lett. 1998, 11, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Jódar, L.; Cortés, J.C. On the hypergeometric matrix function. J. Comp. Appl. Math. 1998, 99, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, R.; Sahai, V. On the hypergeometric matrix functions of two variables. Linear Multilinear Algebra 2018, 66, 1819–1837. [Google Scholar] [CrossRef]
- Khan, M.A.; Ahmed, K. On a two variables analogue of Konhauser’s biorthogonal polynomial Zα(x;k). Far East J. Math. Sci. 1999, 1, 225–240. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Dover Publications Inc.: New York, NY, USA, 1972. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. A Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies, 204; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhet, A.; He, F. On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals. Mathematics 2020, 8, 232. https://doi.org/10.3390/math8020232
Bakhet A, He F. On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals. Mathematics. 2020; 8(2):232. https://doi.org/10.3390/math8020232
Chicago/Turabian StyleBakhet, Ahmed, and Fuli He. 2020. "On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals" Mathematics 8, no. 2: 232. https://doi.org/10.3390/math8020232
APA StyleBakhet, A., & He, F. (2020). On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals. Mathematics, 8(2), 232. https://doi.org/10.3390/math8020232