Next Article in Journal
Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example
Previous Article in Journal
Developing a New Robust Swarm-Based Algorithm for Robot Analysis
Previous Article in Special Issue
Dynamic Modelling of Interactions between Microglia and Endogenous Neural Stem Cells in the Brain during a Stroke
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Construction of Cubic Timmer Triangular Patches and its Application in Scattered Data Interpolation

by
Fatin Amani Mohd Ali
1,
Samsul Ariffin Abdul Karim
2,*,
Azizan Saaban
3,
Mohammad Khatim Hasan
4,
Abdul Ghaffar
5,
Kottakkaran Sooppy Nisar
6,* and
Dumitru Baleanu
7,8
1
Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
2
Fundamental and Applied Sciences Department and Centre for Smart Grid Energy Research (CSMER), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
3
School of Quantitative Sciences, UUMCAS, Universiti Utara Malaysia, Sintok, Kedah 06010, Malaysia
4
Centre for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
5
Department of Mathematical Sciences, BUITEMS, Quetta 87300, Pakistan
6
Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia
7
Department of Mathematics, Cankaya University, 06530 Ankara, Turkey
8
Institute of Space Sciences, 077125 Magurele, Romania
*
Authors to whom correspondence should be addressed.
Mathematics 2020, 8(2), 159; https://doi.org/10.3390/math8020159
Submission received: 14 November 2019 / Revised: 25 November 2019 / Accepted: 26 November 2019 / Published: 22 January 2020
(This article belongs to the Special Issue Mathematical Methods in Applied Sciences)

Abstract

:
This paper discusses scattered data interpolation by using cubic Timmer triangular patches. In order to achieve C1 continuity everywhere, we impose a rational corrected scheme that results from convex combination between three local schemes. The final interpolant has the form quintic numerator and quadratic denominator. We test the scheme by considering the established dataset as well as visualizing the rainfall data and digital elevation in Malaysia. We compare the performance between the proposed scheme and some well-known schemes. Numerical and graphical results are presented by using Mathematica and MATLAB. From all numerical results, the proposed scheme is better in terms of smaller root mean square error (RMSE) and higher coefficient of determination (R2). The higher R2 value indicates that the proposed scheme can reconstruct the surface with excellent fit that is in line with the standard set by Renka and Brown’s validation.

1. Introduction

Many computer graphics and vision problems involve scattered data interpolation (SDI). SDI methods aims to build a smooth function from a set of data, which consist of functional values corresponding to points, which do not obey any structure or order between their relative locations. These methods have a wide range of uses in surface reconstruction, visualization, image restoration, computer graphics, surface deformation, image processing, engineering, and technology, etc.
Most researchers have investigated surface interpolation based on triangulations of scattered data and there are several scattered data fitting techniques, such as the Delaunay triangulation method [1], radial basis function (RBF) [2], and moving least square (MLS) [3]. Very recently, new techniques for interpolating scattered data have been developed [1,4,5], which can be implemented in fast algorithms [6].
The most popular method that is usually used to generate the surface of scattered from the data points is Delaunay triangulation method [7]. It is a very famous method, applied to produce the triangle meshes, where vertices of the triangle are made up of the sample data points.
The property of shape preserving interpolation is an important technique usually applied in curve and surface modeling. Several research papers [2,7,8,9,10,11,12,13] have been published on shape preservation in the last couple of years. Ibraheem et al. [14] proposed a scheme that is suitable for surface reconstruction and deformation. The objective of the scheme is to develop a local positivity preserving when the data points are used.
A new big data infrastructure for the management of cultural items was proposed by Su et al. [15]. It is a multilayer architecture to create new applications based on the modules that were offered by APIs. Streams of data from social networks are mostly captured by this module to handle and update the information. They tested their system by created an application of the Android devices called the Smart Search Museum. This application will access the map that has all the museums of a given area in Italy. Nowadays, the demand for information monitoring and recommendation technology is getting bigger, which is suggested by the systems proposed by [1]. They proposed a novel, collaborative, and user-centered approach for big data application.
This study is an extension of the paper discussed by Ali et al. [16]. The main objective of this study is to construct the SDI using Timmer triangular patches, which are used to visualize the energy data i.e., spatial interpolation in visualizing rainfall data. Firstly, we triangulate the domain data using Delaunay triangulation. Next, we specify the derivatives at the data points and assign Timmer ordinate values for each triangular patch. Lastly, we generate the Timmer triangular patches of the surface. The main novelty of this work is that we construct new cubic triangular Timmer patches and apply them for scattered data interpolation. The proposed scheme has higher accuracy as well as requiring smaller CPU times (in seconds) than some existing schemes.
The rest of the paper is organized as follows. The method of the study is discussed in Section 2 including the derivation of cubic Timmer triangular patches with some examples. In Section 3, we discuss the derivation of the sufficient condition for C 1 continuity on all adjacent triangles. Numerical and graphical results including comparison with some established schemes are presented in Section 4. In the final section, some conclusions and recommendations for future studies are made.

2. Cubic Timmer Triangular Patches

Ali et al. [16] introduced a new cubic triangular basis function, which was actually the extension of the univariate cubic Timmer basis proposed by Timmer [17]. The new cubic Timmer triangular patch is different from the cubic Ball and cubic Bezier triangular patches [16].
The cubic Timmer patch is defined as follows [16]:
T ( u , v , w ) = i + j + k = 3 T i j k 3 ( u , v , w ) t i , j , k .
Equation (1) can be written as
T ( u , v , w ) = u 2 ( 2 u 1 ) t 300 + 4 u 2 v t 210 + 4 u 2 w t 201 + v 2 ( 2 v 1 ) t 030 + 4 v 2 u t 120 +   4 v 2 w t 021 + w 2 ( 2 w 1 ) t 003 + 4 w 2 u t 102 + 4 w 2 v t 012 + 6 u v w t 111
where t i j k denotes the control point, while T i j k 3 ( u , v , w ) ,   i + j + k = 3 are cubic Timmer triangular basis functions defined in [16]. Some properties of the Timmer triangle patch described in Equation (1) are the following:
(a)
Partition of unity: The new cubic Timmer triangular basis satisfies:
i = 0 3 T i j k 3 ( u , v , w ) = 1 .
(b)
Symmetry: The surfaces generated from two different ordering of its control points will look the same.
(c)
Positivity: In each of the cubic Timmer triangular basis functions, the positivity or nonnegativity behavior T i j k 3 ( u , v , w ) 0 is fulfilled, except for the following: T 300 3 ( u , v , w ) 0 when 1 2 u 1 and both T 201 3 ( u , v , w ) 0 and T 210 3 ( u , v , w ) 0 when 0 u 1 2 .
(d)
Convex hull: The Timmer triangular patches may not lie within the convex hull of the control polygon. If the positivity property is fulfilled for the Timmer triangular patches as discussed in (c), it will satisfy the convex hull property.
Figure 1, Figure 2 and Figure 3 show the cubic Timmer triangular basis functions, the Timmer ordinates for the cubic Timmer triangular patch, and the cubic Timmer triangular bases, respectively.
Then, one set of control points is used to construct the surface of cubic Timmer triangular patch. Table 1 shows the control point used to construct the surfaces in Figure 4.
It is observed from Figure 4 that cubic Timmer triangular patches lie in close vicinity of the control polygon as compared to cubic Bèzier and Ball triangular patches, respectively. The cubic Bèzier and Ball triangular patches satisfy the convex hull property while the cubic Timmer triangular, in general, does not obey the convex hull property. However, cubic Timmer triangular patches are close to the control polyhedron.

3. Derivation of Sufficient Condition for C 1 Continuity on Adjacent Triangles

In this section, we show in detail the derivation of the sufficient condition that have been considered in Ali et al. [2]. The derivatives of T with respect to the direction s = ( s x , s y , s z ) = s x V 1 + s y V 2 + s z V 3 , s x + s y + s z = 0 are given by:
D s T ( u , v , w ) = s x T u + s y T v + s z T w   .
From Equation (2), it can be shown that
T u = 4 v 2 t 120 + 4 w 2 t 102 + 6 v w t 111 1 T v = ( 6 v 2 2 v ) t 030 + 8 v w t 021 + 4 w 2 t 012 T w = ( 6 w 2 2 w ) t 003 + 4 v 2 t 021 + 8 v w t 012 } .

Local Scheme

Consider a triangle with vertices W 1 , W 2 , W 3 , barycentric coordinates u , v , w , and edges e 1 = ( 0 , 1 , 1 ) , e 2 = ( 1 , 0 , 1 ) , e 3 = ( 0 , 0 , 1 ) . Any point on the triangle can be expressed as
W = u W 1 + v W 2 + w W 3 ,   u + v + w = 1 .
We use the following two methods of convex combination among the three local schemes as described below:
T ( u , v , w ) = v w T 1 + u w T 2 + u v T 3 v w + u w + u v  
where the local scheme T i , i = 1 , 2 , 3 is obtained by replacing the inner ordinate with t 111 i ,   i = 1 , 2 , 3 . The derivations of all three local schemes are described in the following paragraphs.
Let n 1 , n 2 , n 3 be the inward normal direction to the line segment W 2 W 3 , W 3 W 1 , W 1 W 2 as shown in Figure 5, where
n 1 = e 3 + e 3 . e 1 | e 1 | 2 e 1 , n 2 = e 1 + e 1 . e 2 | e 2 | 2 e 2 , n 1 = e 2 + e 2 . e 3 | e 3 | 2 e 3  
The normal derivatives of local scheme T 1 ,   T 2 , T 3 are defined by
D n 1 T 1 = ( 4 t 120 2 t 021 3 t 030 ) v 2 + ( 4 t 102 2 t 012 3 t 003 ) w 2 + 2 ( 3 t 111 1 2 t 021 2 t 012 ) v w + v t 030 + w t 003 D n 2 T 2 = ( 4 t 120 2 t 021 3 t 030 ) u 2 + ( 4 t 102 2 t 012 3 t 003 ) w 2 + 2 ( 3 t 111 2 2 t 021 2 t 012 ) v w + v t 030 + w t 003 D n 3 T 3 = ( 4 t 120 2 t 021 3 t 030 ) u 2 + ( 4 t 102 2 t 012 3 t 003 ) v 2 + 2 ( 3 t 111 2 2 t 021 2 t 012 ) u v + u t 030 + v t 003 } .
The boundary ordinates are given as follows [2]:
t 210 = t 300 + 1 4 [ ( x 2 x 1 ) T x ( W 1 ) + ( y 2 y 1 ) T y ( W 1 ) ] ,
t 201 = t 300 + 1 4 [ ( x 1 x 3 ) T x ( W 1 ) + ( y 1 y 3 ) T y ( W 1 ) ] ,
t 012 = t 030 + 1 4 [ ( x 3 x 2 ) T x ( W 2 ) + ( y 3 y 2 ) T y ( W 2 ) ] ,
t 120 = t 030 + 1 4 [ ( x 2 x 1 ) T x ( W 2 ) + ( y 2 y 1 ) T y ( W 2 ) ] ,
t 102 = t 003 + 1 4 [ ( x 1 x 3 ) T x ( W 3 ) + ( y 1 y 3 ) T y ( W 3 ) ] ,
and
t 012 = t 003 + 1 4 [ ( x 3 x 2 ) T x ( W 3 ) + ( y 3 y 2 ) T y ( W 3 ) ] .
where the first partial derivatives T x ( W 1 ) ,   T y ( W 1 ) are estimated by using Goodman et al. [18] method. The inner ordinates i.e., t 111 i ,   i = 1 , 2 , 3 are obtained by using two different methods i.e., Goodman and Said [8] and Foley and Opitz [19]. The following paragraphs describes both methods.
The inner ordinates by using Goodman and Said [8] method are given as follows [2]:
a 111 1 = 2 3 ( a 120 + a 102 ) + 1 3 ( a 021 + a 012 ) 1 2 ( a 030 + a 003 ) ,
a 111 2 = 2 3 ( a 210 + a 012 ) + 1 3 ( a 201 + a 102 ) 1 2 ( a 300 + a 003 ) ,
and
a 111 3 = 2 3 ( a 201 + a 021 ) + 1 3 ( a 210 + a 120 ) 1 2 ( a 300 + a 030 ) .
Foley and Opitz’s [19] method is as follows. Assume two adjacent triangles,   L 1 ,   L 2 as shown in Figure 6 with vertices E i and F i with e 1 as a common edge (see Figure 6).
The following equations must be satisfied to produce C 1 continuity along the common edge.
n 201 = r 2 m 210 + 2 s t m 021 + 2 r s m 120 + s 2 m 030 + 2 r t m 111 1 + t 2 m 012   ,
n 210 = r 2 m 201 + 2 s t m 012 + 2 r t m 102 + s 2 m 021 + 2 r s m 111 1 + t 2 m 003   ,
m 201 = u 2 n 201 + 2 v w n 012 + 2 u w n 102 + v 2 n 021 + 2 u v n 111 1 + w 2 n 003   ,
m 201 = u 2 n 210 + 2 v w n 021 + 2 u v n 120 + v 2 n 030 + 2 u w n 111 1 + w 2 n 012   ,
where F 1 = r E 1 + s E 2 + t E 3 and E 1 = u F 1 + v F 2 + w F 3 . Equations ( 9 ) and ( 10 ) will be added together to obtain the inner ordinate m 111 1 . Then, solve for m 111 1 :
m 111 1 = 1 2 u ( v + w ) ( n 201 + n 210 ) u 2 ( m 210 + m 201 ) v 2 ( m 030 + m 021 )       w 2 ( m 012 + m 003 ) 2 v w ( m 021 + m 012 ) u v m 120 2 u w m 102 .
This calculation is similar to obtain the inner ordinate n 111 1 . Adding the Equations ( 11 ) and ( 12 ) and the value of n 111 1 is given as:
n 111 1 = 1 2 r ( s + t ) ( m 201 + m 210 ) r 2 ( n 210 + n 201 ) s 2 ( n 030 + n 021 ) t 2 ( n 012 + n 003 )       2 s t ( n 021 + n 012 ) r s n 120 2 r t n 102 .
To produce the final interpolant, two methods of convex combination mentioned in Equation (6) will be used. The final scheme of scattered data interpolation using cubic Timmer triangular patch can be expressed as Theorem 3.
Theorem 3:
The final interpolating surface T on each triangle can be expressed as:
T ( u , v , w ) = α 1 T 1 ( u , v , w ) + α 2 T 2 ( u , v , w ) + α 3 T 3 ( u , v , w )
where
α 1 = v w v w + u v + u w , α 2 = u w v w + u v + u w , α 3 = u v v w + u v + u w
Equivalently
T ( u , v , w ) = i + j + k = 3 , i 1 ,   j 1 ,   k 1 , t i j k T ( u , v , w ) + 6 u v w ( α 1 t 111 1 + β 2 t 111 2 + γ 3 t 111 3 ) .
Another version of convex combination scheme is presented in Goodman and Said [8] and is given as follows:
α 1 = v 2 w 2 v 2 w 2 + u 2 v 2 + u 2 w 2 , α 2 = u 2 w 2 v 2 w 2 + u 2 v 2 + u 2 w 2 ,   α 3 = u 2 v 2 v 2 w 2 + u 2 v 2 + u 2 w 2 .  
For the purpose of numerical comparison later, we denoted convex combination used in Equation (6) as Choice 1; meanwhile, Goodman and Said [8] is Choice 2.
Theorem 4:
The rational corrected interpolant defined by (8) is in the form quantic numerator and quadratic denominator.
Proof. 
From Equation (8), the resulting interpolant is degree 7 i.e., degree five in numerator and degree two in denominator. □
The following Algorithm 1 can be used to construct surface form scattered date.
Algorithm 1. Construction scattered data interpolation
Input: Data points
  • Triangulate the domain by using Delaunay triangulation.
  • Specify the derivatives at the data points using [18] then assign Timmer ordinates values for each triangular patch.
  • Generate the triangular patches of the surfaces by using cubic Timmer triangular patches.
  • Calculate CPU time (in seconds), RMSE, maximum error and R2.
Output: Surface reconstruction
   Steps 1–4 are repeated for different test function.

4. Results and Discussions

To test the capability of the proposed scattered data interpolation scheme, we use six well-known test functions F 1 ( x , y ) , F 2 ( x , y ) , F 3 ( x , y ) , F 4 ( x , y ) , F 5 ( x , y ) , and F 6 ( x , y ) as shown in Figure 7 [20]. All numerical simulation and graphical visualization are done by using MATLAB R2019a version on Intel® Core i5–6200U 2.3GHz with Turbo Boost up to 2.8GHz.
  • Franke’s exponential function
F 1 ( x , y ) = 0.75 e ( ( 9 x 2 ) 2 + ( 9 y 2 ) 2 4 ) + 0.75 e ( ( 9 x + 1 ) 2 49 + 9 y + 1 10 ) + 0.50 e ( ( 9 x 7 ) 2 + ( 9 y 3 ) 2 4 ) 0.20 e ( ( 9 x 4 ) 2 + ( 9 y 7 ) 2 ) ;
2.
Cliff function
F 2 ( x , y ) = tanh ( 9 y 9 x ) + 1 9 ;
3.
Saddle function
F 3 ( x , y ) = 1.25 + cos ( 4.5 y ) 6 + 6 ( 3 x 1 ) 2 ;
4.
Gentle function
F 4 ( x , y ) = e x p ( ( 81 16 ) ( ( x 0.5 ) 2 + ( y 0.5 ) 2 ) ) 3 ;
5.
Steep function
F 5 ( x , y ) = e x p ( ( 81 4 ) ( ( x 0.5 ) 2 + ( y 0.5 ) 2 ) ) 3 ;
6.
Sphere function
F 6 ( x , y ) = 1 9 64 81 ( ( x 0.5 ) 2 + ( y 0.5 ) 2 ) 0.5 .
We use three datasets i.e., 36, 65, and 100 number of points, as shown in Table 2, Table 3 and Table 4.

5. Numerical Results

Delaunay triangulation for all datasets are shown in Figure 8. Meanwhile, Figure 9, Figure 10 and Figure 11 show the 3D linear interpolant for the scattered datasets, respectively. The surface interpolation by using cubic Timmer triangular patches with selected schemes are shown in Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22 and Figure 23.
Based on Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22 and Figure 23, all schemes are capable of producing a smooth C 1 surface. The 36, 65, and 100 datasets consist of 54, 100, and 164 triangular patches with C 1 continuity for each edge, respectively. Visually, the proposed scheme produces smooth surfaces for all datasets. However, in order to measure the effectiveness of the proposed scattered data interpolation scheme, we calculate root mean square error (RMSE), maximum error (Max error), coefficient of determination (R2), and central processor unit (CPU) time in seconds. For the computation time, a comparison has been made between two different methods to calculate the inner ordinates, i.e., Goodman and Said [8] and Foley and Opitz [19] methods and two distinct calculation of local scheme denoted as Choice 1 and Choice 2. The error analysis for 36, 65, and 100 data points are shown in Table 5, Table 6 and Table 7, respectively.
Based on Table 5, Table 6 and Table 7, the numerical results obtained by using the local scheme with Choice 2 gave larger error than Choice 1 while most of the Foley and Opitz [19] method gave smaller error than the Goodman and Said [8] method. In terms of CPU time (in seconds), the Goodman and Said [8] method takes more time than the Foley and Opitz [19] method. Convex scheme using Choice 2 took longer time than scheme with Choice 1. The main reason is because convex combination using Choice 2 requires more calculation than Choice 1. Furthermore, the reason the Foley and Opitz [19] method has less time is that their scheme considers two triangular patches to calculate the inner ordinates while the Goodman and Said [8] method needs to find the three inner ordinates for each triangular patch.
Hence, we conclude that the best scheme for scattered data interpolation is the cubic Timmer triangular patches with convex combination of Choice 1 and the Foley and Opitz [19] method to calculate the inner ordinates. Figure 24 shows the error comparison of the proposed cubic Timmer triangular patch with all test functions using the best scheme mentioned above with different datasets.
Based on Figure 24, as the number of data points increased, the errors such as RMSE and Max error will be decreased. For CPU time, when more data are used, it will take a longer time, while the comparison using R2 shows that when the datasets used increases, the R2 value will increase too.
Next, we compare the proposed cubic Timmer triangular scheme with the established schemes such as Karim and Saaban [21] and Goodman and Said [8]. We use 100 data points as shown in Table 4. The numerical comparisons are shown in Table 8.
From Table 8, based on RMSE, max error, and R2, we can see clearly that cubic Timmer triangular patch is on par with Karim and Saaban [21] and Goodman and Said [8] schemes. However, in terms of CPU time (in seconds), the proposed scheme require smaller CPU time compared to the other established methods. Thus, we believed that the proposed cubic Timmer triangular patch is suitable to interpolate dense or big scattered datasets, since it requires less CPU time than [8] and [21].
To validate this, we test the proposed cubic Timmer triangular patch scheme by using the seamount dataset obtained in MATLAB. The seamount dataset represents the surface of underwater mountain that is located at 48.2°S, 148.8°W on the Louisville Ridge in the South Pacific in 1984. The seamount data et contains 294 data points and it consists a set of longitude (X), latitude (Y), and depth-in-feet (Z), as shown in Table 9. Table 9 shows 294 data points of the seamount dataset. There are about 566 triangles. Figure 25 and Figure 26 show the Delaunay triangulation and the 3D visualization of the seamount dataset, respectively. The surface interpolation of 566 triangular patches formed by using the proposed cubic Timmer, cubic Ball, and cubic Bèzier are shown in Figure 27.
Then, we calculate the CPU time (in seconds) for each of the construction of the surfaces by using different methods shown in Figure 27. CPU time taken by proposed cubic Timmer triangular patches to construct the surface of the seamount dataset is 102.3931 s. Furthermore, cubic Bèzier and Ball triangular patches required about 103.7781 s and 103.5014 s, respectively. Based on this example, we conclude that the proposed cubic Timmer triangular patch required smaller CPU time especially for big or dense scattered datasets. Furthermore, based on Renka and Brown [22], when the coefficient of determination (R2) is 0.999, the interpolation method can be considered as excellent. Therefore, from all numerical results, the proposed scheme is excellent.

6. Application on Real Data

In this section, the proposed scattered data interpolation using cubic Timmer triangular patch is tested to visualize some real datasets. We use two different datasets i.e., the rainfall data and the digital elevation data. All scattered data discussed in this section are irregularly distributed.

6.1. Visualize the Rainfall Data

First, we test the proposed scattered data interpolation scheme to visualize rainfall data. Based on our previous discussion, we apply the Foley and Opitz [19] method to calculate the inner ordinates and local scheme of Choice 1. The rainfall data sites are obtained from Malaysian Meteorology Department. The data are of average rainfall that were collected at some 25 major stations throughout Peninsular Malaysia. We have chosen the rainfall data for three different months i.e., February, March, and May 2007, as shown in Table 10. Figure 28 shows the Delaunay triangulation of rainfall data at the collected stations.
Figure 29 shows the 3D linear interpolant of the rainfall data for each month. The surface of rainfall distribution in Malaysia of cubic Timmer triangular patches according to each month is shown in Figure 30.
Meanwhile, Table 11 shows all the surface interpolations show that the minimum value of the average rainfall less than zero as shown in Table 11.

6.2. Visualize the Digital Elevation Data of Kalumpang Agricultural Station

Next, we test the proposed scattered data interpolation scheme to visualize the 160 digital elevation data of Kalumpang Agricultural Station (3° 38′ N, 101.34′ E) located about 90 km northeast of Kuala Lumpur, Malaysia (refer to z values in Table 12). We also apply the Foley and Opitz [19] method and Choice 1 to calculate the inner ordinates and local scheme of the proposed cubic Timmer triangular patch. Figure 31 shows the Delaunay triangulation for all 160 data points.
Figure 32 shows the 3D linear interpolant of the data points. The interpolating surfaces using the proposed cubic Timmer, Karim and Saaban [21], and Goodman and Said [8] schemes are illustrated in Figure 33. The final interpolating surface is constructed by combing all 269 triangular patches.
Based on Figure 33, all interpolating surface are visually pleasing. However, we can compare the effectiveness of the proposed scheme by calculating the CPU time (in seconds). The proposed cubic Timmer triangular scheme took about 33.6956 s to construct the surface. Furthermore, the Karim and Saaban [21] scheme required 33.8426 s while the Goodman and Said [8] scheme required 33.9239 s to interpolate the surface of digital elevation data. Hence, we can conclude that the proposed cubic Timmer triangular scheme is the best scheme in terms of CPU time compared to other schemes.

7. Conclusions and Future Work

In this paper, the cubic Timmer triangular patches, as implemented in Ali et al. [16], is applied to interpolate the scattered data. Goodman and Said [8] and Foley and Opitz [19] schemes are used in order to calculate the inner ordinates for each local scheme. It is observed that the cubic Timmer triangular patches offer lower CPU time (computational cost) as compared to the cubic Bezier and Ball triangular patches methods. Moreover, the simulation error shows that the cubic Timmer triangular patches have the same values as obtained from Goodman and Said schemes. In addition, we infer from the obtained results that the cubic Timmer triangular patches give better results as compared to some established schemes when the datasets are increasing. Therefore, we can preserve the positivity of the rainfall data by constructing the shape preservation of cubic Timmer triangular patches in our main studies in future.

Author Contributions

Conceptualization, S.A.A.K.; formal analysis, A.G. and D.B.; funding acquisition, S.A.A.K.; methodology, A.G. and K.S.N.; software, F.A.M.A., S.A.A.K., A.S., and M.K.H.; visualization, A.G.; writing—original draft, F.A.M.A., S.A.A.K., A.S., M.K.H., and K.S.N.; writing—review and editing, K.S.N. and D.B. All authors have read and agreed to the published version of the manuscript.

Funding

This study is fully supported by Universiti Teknologi PETRONAS (UTP) through its research grants YUTP:0153AA-H24 and the Ministry of Education, Malaysia through FRGS/ 1/2018/STG06/UTP/03/1015MA0-020.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Amato, F.; Moscato, V.; Picariello, A.; Sperlí, G. Recommendation in social media networks. In Proceedings of the 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), Laguna Hills, CA, USA, 19–21 April 2017; pp. 213–216. [Google Scholar]
  2. Karim, S.A.B.A.; Saaban, A. Visualization Terrain Data Using Cubic Ball Triangular Patches. In Proceedings of the MATEC Web of Conferences, 18–19 September 2018; Volume 225, p. 06023. [Google Scholar]
  3. Ni, H.; Li, Z.; Song, H. Moving least square curve and surface fitting with interpolation conditions. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010; Volume 13, pp. V13–V300. [Google Scholar]
  4. Ali, F.A.M.; Karim, S.A.A.; Dass, S.C.; Skala, V.; Saaban, A.; Hasan, M.K.; Ishak, H. Efficient Visualization of Scattered Energy Distribution Data by Using Cubic Timmer Triangular Patches. In Energy Efficiency in Mobility Systems; Sulaiman, S.A., Ed.; Springer: Singapore, 2020; pp. 145–180. [Google Scholar]
  5. Awang, N.; Rahmat, R.W. Reconstruction of Smooth Surface by Using Cubic Bezier Triangular Patch in Gui. Malays. J. Ind. Technol. 2017, 2, 61–69. [Google Scholar]
  6. Cavoretto, R.; Rossi, A.D.; Dell’Accio, F.; Tommaso, F.D. Fast computation of triangular Shepard interpolants. J. Comput. Appl. Math. 2019, 354, 457–470. [Google Scholar] [CrossRef]
  7. Grise, G.; Meyer-Hermann, M. Surface reconstruction using Delaunay triangulation for applications in life sciences. Comput. Phys. Commun. 2011, 182, 967–977. [Google Scholar] [CrossRef]
  8. Goodman, T.N.; Said, H. A Triangular Interpolant Suitable for Scattered Data Interpolation. Commun. Appl. Numer. Methods 1991, 7, 479–485. [Google Scholar] [CrossRef]
  9. Hussain, M.Z.; Hussain, M. Shape preserving scattered data interpolation. Eur. J. Sci. Res. 2009, 25, 151–164. [Google Scholar]
  10. Hussain, M.Z.; Sarfraz, M. Monotone piecewise rational cubic interpolation. Int. J. Comput. Math. 2009, 86, 423–430. [Google Scholar] [CrossRef]
  11. Hussain, M.Z.; Hussain, M. C1 positivity preserving scattered data interpolation using rational Bernstein-Bézier triangular patch. J. Appl. Math. Comput. 2011, 35, 281–293. [Google Scholar] [CrossRef]
  12. Karim, S.A.A. Monotonic Interpolating Curves by Using Rational Cubic Ball Interpolation. Appl. Math. Sci. 2014, 8, 7259–7276. [Google Scholar] [CrossRef]
  13. Karim, S.A.A.; Saaban, A.; Hasan, M.K.; Sulaiman, J.; Hashim, I. Interpolation using Cubic Bèzier Triangular Patches. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1746–1752. [Google Scholar] [CrossRef]
  14. Ibraheem, F.; Hussain, M.Z.; Bhatti, A.A. C¹ Positive Surface over Positive Scattered Data Sites. PLOS ONE 2015, 10, e0120658. [Google Scholar] [CrossRef] [PubMed]
  15. Su, X.; Sperli, G.; Moscato, V.; Picariello, A.; Esposito, C.; Choi, C. An Edge Intelligence Empowered Recommender System Enabling Cultural Heritage Applications. IEEE Trans. Ind. Inform. 2019, 15, 4266–4275. [Google Scholar] [CrossRef]
  16. Ali, F.A.M.; Karim, S.A.A.; Dass, S.C.; Skala, V.; Saaban, A.; Hasan, M.K.; Ishak, H. New cubic Timmer triangular patches with C1 and G1continuity. J. Teknol. 2019, 81, 1–11. [Google Scholar]
  17. Timmer, H.G. Alternative representation for parametric cubic curves and surfaces. Comput.-Aided Des. 1980, 12, 25–28. [Google Scholar] [CrossRef]
  18. Goodman, T.N.T.; Said, H.B.; Chang, L.H.T. Local derivative estimation for scattered data interpolation. Appl. Math. Comput. 1995, 68, 41–50. [Google Scholar] [CrossRef]
  19. Foley, T.A.; Opitz, K. Hybrid cubic Bézier triangle patches. In Mathematical Methods in Computer Aided Geometric Design II; Academic Press: New York, NY, USA, 1992; pp. 275–286. [Google Scholar]
  20. Awang, N.; Rahmat, R.W.; Sulaiman, P.S.; Jaafar, A. Delaunay Triangulation of a missing points. J. Adv. Sci. Eng. 2017, 7, 58–69. [Google Scholar]
  21. Karim, S.A.A. Shape Preserving by Using Rational Cubic Ball Interpolant. Far East J. Math. Sci. 2015, 96, 211–230. [Google Scholar]
  22. Renka, R.J.; Brown, R. Algorithm 792: Accuracy Tests of ACM Algorithms for Interpolation of Scattered Data in the Plane. ACM Trans. Math. Softw. 1999, 25, 78–94. [Google Scholar] [CrossRef]
Figure 1. Some cubic Timmer triangular basis functions.
Figure 1. Some cubic Timmer triangular basis functions.
Mathematics 08 00159 g001aMathematics 08 00159 g001b
Figure 2. Control nets for cubic Timmer triangular patch.
Figure 2. Control nets for cubic Timmer triangular patch.
Mathematics 08 00159 g002
Figure 3. Cubic Timmer triangular bases.
Figure 3. Cubic Timmer triangular bases.
Mathematics 08 00159 g003
Figure 4. Surface interpolation.
Figure 4. Surface interpolation.
Mathematics 08 00159 g004aMathematics 08 00159 g004b
Figure 5. Inward normal direction to the edges of triangle.
Figure 5. Inward normal direction to the edges of triangle.
Mathematics 08 00159 g005
Figure 6. Two adjacent cubic triangular patches for Foley and Opitz [19].
Figure 6. Two adjacent cubic triangular patches for Foley and Opitz [19].
Mathematics 08 00159 g006
Figure 7. Test functions.
Figure 7. Test functions.
Mathematics 08 00159 g007
Figure 8. Delaunay triangulation.
Figure 8. Delaunay triangulation.
Mathematics 08 00159 g008aMathematics 08 00159 g008b
Figure 9. 3D linear interpolant for 36 datasets.
Figure 9. 3D linear interpolant for 36 datasets.
Mathematics 08 00159 g009
Figure 10. 3D linear interpolant for 65 datasets.
Figure 10. 3D linear interpolant for 65 datasets.
Mathematics 08 00159 g010
Figure 11. 3D linear interpolant for 100 datasets.
Figure 11. 3D linear interpolant for 100 datasets.
Mathematics 08 00159 g011aMathematics 08 00159 g011b
Figure 12. Surface interpolation using Goodman and Said method and Choice 1 for 36 datasets.
Figure 12. Surface interpolation using Goodman and Said method and Choice 1 for 36 datasets.
Mathematics 08 00159 g012aMathematics 08 00159 g012b
Figure 13. Surface interpolation using Goodman and Said method and Choice 2 for 36 datasets.
Figure 13. Surface interpolation using Goodman and Said method and Choice 2 for 36 datasets.
Mathematics 08 00159 g013
Figure 14. Surface interpolation using Foley and Opitz method and Choice 1 for 36 datasets.
Figure 14. Surface interpolation using Foley and Opitz method and Choice 1 for 36 datasets.
Mathematics 08 00159 g014
Figure 15. Surface interpolation using Foley and Opitz method and Choice 2 for 36 datasets.
Figure 15. Surface interpolation using Foley and Opitz method and Choice 2 for 36 datasets.
Mathematics 08 00159 g015aMathematics 08 00159 g015b
Figure 16. Surface interpolation using Goodman and Said method and Choice 1 for 65 datasets.
Figure 16. Surface interpolation using Goodman and Said method and Choice 1 for 65 datasets.
Mathematics 08 00159 g016aMathematics 08 00159 g016b
Figure 17. Surface interpolation using Goodman and Said method and Choice 2 for 65 datasets.
Figure 17. Surface interpolation using Goodman and Said method and Choice 2 for 65 datasets.
Mathematics 08 00159 g017
Figure 18. Surface interpolation using Foley and Opitz method and Choice 1 for 65 datasets.
Figure 18. Surface interpolation using Foley and Opitz method and Choice 1 for 65 datasets.
Mathematics 08 00159 g018
Figure 19. Surface interpolation using Foley and Opitz method and Choice 2 for 65 datasets.
Figure 19. Surface interpolation using Foley and Opitz method and Choice 2 for 65 datasets.
Mathematics 08 00159 g019aMathematics 08 00159 g019b
Figure 20. Surface interpolation using Goodman and Said method and Choice 1 for 100 datasets.
Figure 20. Surface interpolation using Goodman and Said method and Choice 1 for 100 datasets.
Mathematics 08 00159 g020aMathematics 08 00159 g020b
Figure 21. Surface interpolation using Goodman and Said method and Choice 2 for 100 datasets.
Figure 21. Surface interpolation using Goodman and Said method and Choice 2 for 100 datasets.
Mathematics 08 00159 g021
Figure 22. Surface interpolation using Foley and Opitz method and Choice 1 for 100 datasets.
Figure 22. Surface interpolation using Foley and Opitz method and Choice 1 for 100 datasets.
Mathematics 08 00159 g022
Figure 23. Surface interpolation using Foley and Opitz method and Choice 2 for 100 datasets.
Figure 23. Surface interpolation using Foley and Opitz method and Choice 2 for 100 datasets.
Mathematics 08 00159 g023aMathematics 08 00159 g023b
Figure 24. Comparison of the proposed method using the best schemes.
Figure 24. Comparison of the proposed method using the best schemes.
Mathematics 08 00159 g024aMathematics 08 00159 g024b
Figure 25. Delaunay triangulation of seamount dataset.
Figure 25. Delaunay triangulation of seamount dataset.
Mathematics 08 00159 g025
Figure 26. 3D visualization of seamount dataset.
Figure 26. 3D visualization of seamount dataset.
Mathematics 08 00159 g026
Figure 27. Surface interpolation.
Figure 27. Surface interpolation.
Mathematics 08 00159 g027aMathematics 08 00159 g027b
Figure 28. Delaunay triangulation of rainfall data.
Figure 28. Delaunay triangulation of rainfall data.
Mathematics 08 00159 g028
Figure 29. 3D Linear Interpolant of the rainfall data.
Figure 29. 3D Linear Interpolant of the rainfall data.
Mathematics 08 00159 g029
Figure 30. Surface Interpolation using the proposed scheme.
Figure 30. Surface Interpolation using the proposed scheme.
Mathematics 08 00159 g030aMathematics 08 00159 g030b
Figure 31. Delaunay triangulation for digital elevation data.
Figure 31. Delaunay triangulation for digital elevation data.
Mathematics 08 00159 g031
Figure 32. 3D linear interpolant for digital elevation data.
Figure 32. 3D linear interpolant for digital elevation data.
Mathematics 08 00159 g032
Figure 33. Surface Interpolation.
Figure 33. Surface Interpolation.
Mathematics 08 00159 g033
Table 1. Control points.
Table 1. Control points.
x−4.0−4.0−4.0−4.0−1.51.03.51.0−1.5−1.5
y3.51.0−1.5−4.0−4.0−4.0−4.0−1.5−1.5−1.5
z20.259.001.0.2524.0010.259.0020.254.754.753.50
Table 2. Thirty-six datasets.
Table 2. Thirty-six datasets.
XY F 1 ( x , y ) F 2 ( x , y ) F 3 ( x , y ) F 4 ( x , y ) F 5 ( x , y ) F 6 ( x , y )
0.00000.00000.76640.11111.33330.12071.34E-050.0386
0.50000.00000.43492.74E-051.38330.42800.00210.2349
1.00000.00000.10763.38E-091.28330.12071.34E-050.0386
0.15000.15001.13700.11111.33820.20270.00230.2383
0.70000.15000.43041.11E-051.30200.30770.01240.2922
0.50000.20000.53450.00101.31280.36470.05390.3367
0.25000.30001.07260.15801.24230.25280.04180.3292
0.40000.30000.71340.03151.24210.32980.12110.3603
0.75000.40000.59030.00041.21390.24540.07680.3471
0.85000.25000.50884.53E-061.26070.19080.00790.2779
0.55000.45000.38230.03151.16130.33000.30120.3861
0.00000.50000.48180.22221.17470.09400.00210.2349
0.20000.45000.64580.21981.14120.21190.05120.3352
0.45000.55000.29460.19071.10370.33000.30120.3861
0.60000.65000.19200.15801.15520.32410.17260.3704
0.25000.70000.29300.22221.12400.25280.04180.3292
0.40000.80000.05150.22211.18870.34670.04400.3307
0.65000.75000.13720.19071.19610.31660.05960.3397
0.80000.85000.08230.15801.24310.23890.00450.2600
0.85000.65000.14120.00591.20430.18340.01770.3032
1.00000.50000.16102.74E-051.21990.09400.00210.2349
1.00001.00000.03590.11111.27120.12071.34E-050.0386
0.50001.00000.14600.22221.33460.42800.00210.2349
0.10000.85000.29350.22221.23630.16760.00110.2125
0.00001.00000.27030.22221.30290.12071.34E-050.0386
0.25000.00000.81890.00241.40690.31190.00060.1911
0.75000.00000.25213.05E-071.31500.31190.00060.1911
0.25001.00000.22220.22221.34960.31190.00060.1911
0.00000.25000.80260.21981.26830.10010.00060.1911
0.75001.00000.08100.21981.29130.31190.00060.1911
0.00000.75000.33950.22221.19870.10010.00060.1911
1.00000.25000.23023.05E-071.25730.10010.00060.1911
1.00000.75000.05040.00241.22950.10010.00060.1911
0.19000.19001.21180.11111.32290.22560.00680.2733
0.32000.75000.20290.22211.14770.30120.04880.3338
0.79000.46000.47770.00061.20410.21810.05880.3393
Table 3. Sixty-five datasets.
Table 3. Sixty-five datasets.
XY F 1 ( x , y ) F 2 ( x , y ) F 3 ( x , y ) F 4 ( x , y ) F 5 ( x , y ) F 6 ( x , y )
0.05000.45000.57750.00241.17670.31190.00520.2649
0.00000.50000.48183.05E-071.17470.31190.00210.2349
0.00001.00000.27033.05E-071.30290.10011.34E-050.0386
0.00000.00000.76640.00241.33330.10011.34E-050.0386
0.10000.15001.04950.21981.32710.31190.00110.2125
0.10000.75000.32290.22221.18120.31190.00370.2534
0.15000.30001.06000.22221.24370.10010.01240.2922
0.20000.10001.07740.21981.37320.10010.00210.2349
0.25000.20001.18920.20101.32390.21000.01520.2985
0.30000.35000.85622.89E-061.19820.09550.09400.3530
0.35000.85000.15880.02121.22970.10820.01770.3032
0.50000.00000.43490.22201.38330.39550.00210.2349
0.50001.00000.14600.22201.33460.09550.00210.2349
0.55000.95000.13290.20101.29750.10820.00520.2649
0.25000.00000.81890.00041.40690.33730.00060.1911
0.75000.00000.25210.15801.31500.32410.00060.1911
1.00000.25000.23020.21981.25730.35820.00060.1911
1.00000.75000.05040.15801.22950.30960.00060.1911
0.75001.00000.08102.74E-051.29130.29790.00060.1911
0.25001.00000.22220.06421.34960.27840.00060.1911
0.00000.75000.33950.21631.19870.31950.00060.1911
0.00000.25000.80261.84E-061.26830.28510.00060.1911
0.87501.00000.05530.00021.27910.24840.00010.1321
1.00000.37500.24050.19071.23540.27460.00150.2242
1.00000.87500.04060.00021.25040.21350.00010.1321
0.62501.00000.11240.01401.30990.21620.00150.2242
0.00000.37500.64644.53E-061.21340.19080.00150.2242
0.00000.12500.82201.11E-051.31510.15170.00010.1321
0.60000.25000.50500.03151.27230.16230.07680.3471
0.60000.65000.19200.06421.15520.14030.17260.3704
0.60000.85000.11963.38E-091.23760.12070.02280.3109
0.65000.70000.15852.74E-051.17960.09400.09400.3530
0.70000.20000.50700.11111.28550.12070.02400.3125
0.70000.65000.18540.22211.17960.41960.09400.3530
0.70000.90000.10210.22211.26110.09440.00580.2682
0.75000.10000.34750.00591.30580.34940.00370.2534
0.75000.35000.63680.02121.22960.32480.05960.3397
0.75000.85000.09480.21671.24210.30910.00790.2779
0.80000.40000.57290.04571.21870.33410.04400.3307
0.80000.65000.16080.22221.19750.24140.03420.3232
0.85000.25000.50880.22211.26070.26010.00790.2779
0.90000.35000.45880.22171.23660.21320.00830.2795
0.90000.80000.06543.21E-081.23360.10820.00210.2349
0.95000.90000.04733.21E-081.25550.21000.00020.1539
1.00000.00000.10760.22071.28330.35371.34E-050.0386
1.00000.50000.16100.00051.21990.17150.00210.2349
1.00001.00000.03590.00031.27120.39551.34E-050.0386
0.56251.00000.12920.00021.32180.37970.00190.2323
0.00000.43750.55640.00611.19070.26900.00190.2323
0.42500.22500.70250.16341.30400.33450.06430.3419
0.57500.45000.39400.22221.16730.09550.28280.3843
0.37320.57680.31150.11111.08570.12070.21360.3764
0.44750.37250.51280.11111.18640.12070.22680.3781
0.20130.85920.26580.11111.23950.12070.00400.2562
0.26110.70210.28570.11111.12320.12070.04590.3320
0.20240.53680.45640.11111.10980.12070.05400.3368
1.00000.12500.15520.11111.27600.12070.00010.1321
0.87500.00000.17960.11111.29580.12070.00010.1321
0.47500.75000.02470.11111.16320.12070.09280.3526
0.86250.52500.29380.11111.20490.12070.02300.3112
0.37500.00000.63310.11111.41410.12070.00150.2242
0.52730.13410.46680.11111.34330.12070.02180.3096
0.70580.50730.38780.11111.18180.12070.14120.3647
0.50370.56050.26940.11111.11870.12070.30940.3868
0.00000.62500.38920.11111.16890.12070.00150.2242
Table 4. One hundred datasets.
Table 4. One hundred datasets.
XY F 1 ( x , y ) F 2 ( x , y ) F 3 ( x , y ) F 4 ( x , y ) F 5 ( x , y ) F 6 ( x , y )
0.05000.45000.57750.22211.17670.11990.00520.2649
0.00000.50000.48180.22221.17470.09400.00210.2349
0.00001.00000.27030.22221.30290.12070.00000.0386
0.00000.00000.76640.11111.33330.12070.00000.0386
0.10000.15001.04950.15801.32710.16760.00110.2125
0.10000.75000.32290.22221.18120.15780.00370.2534
0.15000.30001.06000.20821.24370.18660.01240.2922
0.20000.10001.07740.03151.37320.24800.00210.2349
0.25000.20001.18920.06421.32390.26580.01520.2985
0.30000.35000.85620.15801.19820.27840.09400.3530
0.35000.85000.15880.22221.22970.33620.01770.3032
0.50000.00000.43490.00001.38330.42800.00210.2349
0.50001.00000.14600.22221.33460.42800.00210.2349
0.55000.95000.13290.22211.29750.40300.00520.2649
0.60000.25000.50500.00041.27230.33730.07680.3471
0.60000.65000.19200.15801.15520.32410.17260.3704
0.60000.85000.11960.21981.23760.35820.02280.3109
0.65000.70000.15850.15801.17960.30960.09400.3530
0.70000.20000.50700.00001.28550.29790.02400.3125
0.70000.65000.18540.06421.17960.27840.09400.3530
0.70000.90000.10210.21631.26110.31950.00580.2682
0.75000.10000.34750.00001.30580.28510.00370.2534
0.75000.35000.63680.00021.22960.24840.05960.3397
0.75000.85000.09480.19071.24210.27460.00790.2779
0.80000.40000.57290.00021.21870.21350.04400.3307
0.80000.65000.16080.01401.19750.21620.03420.3232
0.85000.25000.50880.00001.26070.19080.00790.2779
0.90000.35000.45880.00001.23660.15170.00830.2795
0.90000.80000.06540.03151.23360.16230.00210.2349
0.95000.90000.04730.06421.25550.14030.00020.1539
1.00000.00000.10760.00001.28330.12070.00000.0386
0.00000.62500.38920.22221.16890.09550.00150.2242
0.62500.00000.32030.00001.34440.39550.00150.2242
0.87500.00000.17960.00001.29580.21000.00010.1321
0.00000.87500.30260.22221.25110.10820.00010.1321
0.43860.51140.33830.17501.10930.32710.30800.3867
0.18160.58220.40150.22211.11190.20090.03730.3258
0.42500.22500.70250.00591.30400.34940.06430.3419
0.47500.85000.05790.22201.23280.37560.02750.3167
0.41250.68550.14770.22061.11630.33190.14220.3649
0.59930.12370.40600.00001.32990.36530.01550.2992
1.00000.12500.15520.00001.27600.10820.00010.1321
0.12501.00000.25160.22221.32610.21000.00010.1321
0.18750.86750.26790.22221.24610.23270.00300.2466
0.12500.00000.84670.02121.36990.21000.00010.1321
0.75000.74380.11810.10491.20830.25780.02820.3174
0.25450.72630.27870.22221.13780.25860.03490.3238
0.89380.46250.35590.00011.21520.15220.01400.2960
1.00000.62500.08310.00031.21760.09550.00150.2242
0.78440.52500.35000.00211.19390.22150.06400.3418
0.90630.68750.09430.00421.21450.14970.00580.2680
0.88590.57580.19810.00081.20560.15770.01450.2972
0.53750.75000.08420.21751.17550.35230.09140.3522
0.18860.43410.69150.21961.15200.20490.04280.3299
0.31120.48060.49710.21221.10820.27840.16070.3684
0.49430.36520.47350.01981.19720.33940.23060.3786
0.35280.58750.31390.21901.08400.30100.18410.3722
0.37501.00000.18420.22221.35420.39550.00150.2242
0.31250.93330.21090.22221.30340.33660.00370.2531
0.84410.89870.06760.16171.25700.21460.00120.2161
0.39540.41130.52770.12691.15250.31790.22780.3782
0.38990.31490.71780.04571.22910.32440.13030.3624
1.00000.50000.16100.00001.21990.09400.00210.2349
1.00001.00000.03590.11111.27120.12070.00000.0386
0.25000.00000.81890.00241.40690.31190.00060.1911
0.75000.00000.25210.00001.31500.31190.00060.1911
1.00000.25000.23020.00001.25730.10010.00060.1911
1.00000.75000.05040.00241.22950.10010.00060.1911
0.75001.00000.08100.21981.29130.31190.00060.1911
0.25001.00000.22220.22221.34960.31190.00060.1911
0.00000.75000.33950.22221.19870.10010.00060.1911
0.00000.25000.80260.21981.26830.10010.00060.1911
0.87501.00000.05530.20101.27910.21000.00010.1321
1.00000.37500.24050.00001.23540.09550.00150.2242
1.00000.87500.04060.02121.25040.10820.00010.1321
0.62501.00000.11240.22201.30990.39550.00150.2242
0.00000.37500.64640.22201.21340.09550.00150.2242
0.00000.12500.82200.20101.31510.10820.00010.1321
0.56251.00000.12920.22211.32180.41960.00190.2323
0.00000.43750.55640.22211.19070.09440.00190.2323
0.65000.48750.39440.01131.17350.29750.21070.3761
0.08110.56250.43290.22221.14460.13760.00880.2815
0.11540.65380.35980.22221.14200.16140.01030.2865
0.37500.00000.63310.00031.41410.39550.00150.2242
0.31810.10350.92630.00461.39100.32990.00710.2745
0.51970.18730.50320.00061.31740.36690.04570.3318
0.43710.10160.61220.00051.37960.38290.01240.2921
0.16250.21251.19180.15801.30420.20340.00620.2704
0.23750.28751.11460.15801.25280.24600.03310.3222
0.06250.31250.86670.21981.23830.13100.00340.2507
0.76250.26250.60330.00001.25960.24880.02640.3154
0.62980.36770.52690.00201.21250.31150.16630.3694
0.54950.54550.28110.10711.13490.32990.30420.3863
0.49990.63400.19960.20401.12190.33940.23170.3787
0.55810.44430.39180.02541.16560.32870.29240.3852
0.41250.77960.03100.22191.17400.34670.05860.3392
Table 5. Error analysis for 36 datasets.
Table 5. Error analysis for 36 datasets.
Test FunctionErrorGoodman and SaidFoley and Opitz
Choice 1Choice 2Choice 1Choice 2
F 1 ( x , y ) RMSE0.0258270.0259010.0260970.026458
R20.9918580.9918110.9916870.991455
Max error0.1090910.1104430.1096420.110142
CPU time3.6668853.7928373.5319563.612421
F 2 ( x , y ) RMSE0.0130910.0131050.0128990.012970
R20.9826580.9826200.9831630.982978
Max error0.0497550.0502220.0483330.049466
CPU time3.4651823.5819243.2384753.418465
F 3 ( x , y ) RMSE0.0060860.0060970.0058340.005897
R20.9935180.9934930.9940430.993914
Max error0.0268360.0269230.0260820.026475
CPU time3.3813973.4120423.3625753.381239
F 4 ( x , y ) RMSE0.1272800.1272850.1273920.127379
R20.9990120.9987420.9986710.998923
Max error0.3353920.3353920.3353920.335392
CPU time3.7182933.8192443.6341243.801234
F 5 ( x , y ) RMSE0.0062440.0063260.0059520.006095
R20.9932180.9930390.9938370.993539
Max error0.0305890.0314750.0279310.028902
CPU time3.9316214.0129383.5444733.712645
F 6 ( x , y ) RMSE0.0035870.0036020.0039800.003995
R20.9976470.9976280.9971040.997082
Max error0.0155510.0155890.0152640.014997
CPU time3.9108173.9123413.7229303.800012
Table 6. Error analysis for 65 datasets.
Table 6. Error analysis for 65 datasets.
Test FunctionErrorGoodman and SaidFoley and Opitz
Choice 1Choice 2Choice 1Choice 2
F 1 ( x , y ) RMSE0.0155040.0155860.0150900.015246
R20.9970660.9970340.9972210.997163
Max error0.0624310.0632160.0638290.066465
CPU time9.0125129.2145118.9124519.109472
F 2 ( x , y ) RMSE0.0051620.0051770.0050150.005016
R20.9973040.9972880.9974570.997454
Max error0.0307040.0307920.0315530.031558
CPU time8.7299359.4978468.6239598.761479
F 3 ( x , y ) RMSE0.0031510.0031630.0030180.003091
R20.9982630.9982490.9984060.998328
Max error0.0153830.0154610.0158250.016667
CPU time8.9102418.9485178.8910258.901256
F 4 ( x , y ) RMSE0.1272470.1272490.1272740.127264
R20.9989010.9987030.9987670.998513
Max error0.3339870.3339870.3339870.333987
CPU time9.1933169.2015379.0012859.182451
F 5 ( x , y ) RMSE0.0049510.0049800.0048000.004877
R20.9957370.9956860.9959920.995863
Max error0.0331100.0336350.0313420.031923
CPU time8.9012568.9245148.8025618.856126
F 6 ( x , y ) RMSE0.0019530.0019590.0021220.002146
R20.9993030.9992980.9991770.999158
Max error0.0106020.0107150.0099570.009725
CPU time8.9812568.9924568.9001288.941588
Table 7. Error analysis for 100 datasets.
Table 7. Error analysis for 100 datasets.
Test FunctionErrorGoodman and SaidFoley and Opitz
Choice 1Choice 2Choice 1Choice 2
F 1 ( x , y ) RMSE0.0068340.0068870.0066600.006804
R20.9994300.9994210.9994590.999435
Max error0.0341650.0344460.0324020.032503
CPU time19.24575219.15794118.98946619.015484
F 2 ( x , y ) RMSE0.0036380.0036440.0035250.003568
R20.9986610.9986560.9987420.998712
Max error0.0239400.0240760.0243440.025017
CPU time17.77212217.38787817.72612017.609815
F 3 ( x , y ) RMSE0.0009970.0010040.0009600.001022
R20.9998260.9998240.9998390.999817
Max error0.0048700.0050090.0043370.004622
CPU time17.37700717.80183016.24835516.449573
F 4 ( x , y ) RMSE0.1272130.1272090.1271990.127200
R20.9977900.9977350.9978510.997732
Max error0.3343660.3343870.3331550.333431
CPU time18.51780117.53141817.22138217. 582176
F 5 ( x , y ) RMSE0.0022730.0022990.0021590.002221
R20.9991010.9990810.9991890.999142
Max error0.0126720.0126850.0125590.012585
CPU time19.09238419.18173818.46308319.083249
F 6 ( x , y ) RMSE0.0011160.0011530.0008670.000868
R20.9997720.9997570.9998630.999862
Max error0.0079140.0079170.0054580.005459
CPU time18.52195319.72890717.65840318.307126
Table 8. Comparison with established schemes.
Table 8. Comparison with established schemes.
Test FunctionError100 Data Points
Goodman and Said [8]Karim and Saaban [21]Proposed Scheme
F 1 ( x , y ) RMSE0.0065230.0065430.006660
R20.9994810.9994770.999459
Max error0.0323460.0334340.032402
CPU time19.85330919.74025018.989466
F 2 ( x , y ) RMSE0.0034860.0034640.003525
R20.9987700.9987860.998742
Max error0.0237740.0226340.024344
CPU time18.45482917.93783317.726120
F 3 ( x , y ) RMSE0.0009530.0011510.000960
R20.9998410.9997680.999839
Max error0.0042930.0057250.004337
CPU time16.94755216.85168116.748355
F 4 ( x , y ) RMSE0.1272050.1271900.127200
R20.9976540.9980570.997735
Max error0.3343660.3343660.334366
CPU time18.04527317.58638817.582176
F 5 ( x , y ) RMSE0.0020930.0020600.002159
R20.9992380.9992620.999189
Max error0.0124600.0122640.012559
CPU time18.67576618.59099318.463083
F 6 ( x , y ) RMSE0.0008730.0008810.000867
R20.9998610.9998580.999863
Max error0.0054580.0054580.005458
CPU time17.95643817.77726917.658403
Table 9. Seamount dataset.
Table 9. Seamount dataset.
XYZXYZXYZ
211.18−47.97−4250211.07−48.18−3050211.19−48.215−1100
211.28−47.97−4250211.11−48.18−2615211.2−48.215−1000
211.1−47.98−4250211.15−48.18−1850211.21−48.215−975
211.38−47.98−4250211.17−48.18−1730211.22−48.215−925
211.45−48−4250211.19−48.18−1150211.23−48.215−725
211.23−48.01−3900211.2−48.18−1025211.24−48.215−800
211.31−48.01−3950211.21−48.18−600211.25−48.215−1050
210.98−48.02−4250211.22−48.18−900210.95−48.22−4050
211.13−48.02−3900211.23−48.18−1050211.07−48.22−3700
211.39−48.02−4000211.24−48.18−800211.11−48.22−2910
211.06−48.03−4050211.25−48.18−950211.15−48.22−2150
211.51−48.03−4250211.26−48.18−1300211.17−48.22−1750
211.19−48.04−3700211.27−48.18−1370211.19−48.22−1250
211.26−48.04−3730211.28−48.18−1450211.2−48.22−1150
211.32−48.05−3650211.29−48.18−1490211.21−48.22−1125
211.1−48.06−3800211.31−48.18−1850211.22−48.22−950
211.01−48.07−3980211.34−48.18−2575211.23−48.22−950
211.39−48.07−3700211.38−48.18−3350211.24−48.22−925
211.48−48.07−3980211.19−48.185−1300211.25−48.22−1125
211.17−48.08−3280211.2−48.185−1050211.27−48.22−1350
211.21−48.08−3100211.21−48.185−650211.29−48.22−1650
211.25−48.08−3140211.22−48.185−770211.31−48.22−1750
211.29−48.08−3250211.23−48.185−750211.34−48.22−2500
210.91−48.09−4250211.24−48.185−620211.38−48.22−3025
211.57−48.09−4250211.25−48.185−950211.42−48.22−3400
211.15−48.1−3150211.26−48.185−1150211.16−48.23−2200
211.19−48.1−3000211.27−48.185−1000211.18−48.23−1850
211.23−48.1−2850211.28−48.185−1150211.2−48.23−1500
211.27−48.1−3000210.89−48.19−4250211.22−48.23−1325
211.31−48.1−3100211−48.19−3650211.24−48.23−1375
211.34−48.1−3220211.14−48.19−2300211.26−48.23−1530
211.06−48.11−3630211.16−48.19−1940211.28−48.23−1680
211.47−48.11−3765211.18−48.19−1550211.3−48.23−2000
211.13−48.12−3170211.2−48.19−1050211.02−48.24−3700
211.17−48.12−2875211.21−48.19−675211.09−48.24−3325
211.21−48.12−2600211.22−48.19−600211.13−48.24−2875
211.25−48.12−2600211.23−48.19−590211.17−48.24−2200
211.29−48.12−2575211.24−48.19−650211.19−48.24−1850
211.32−48.12−2950211.25−48.19−800211.21−48.24−1600
211.53−48.12−4070211.26−48.19−1050211.23−48.24−1900
210.96−48.14−3920211.27−48.19−950211.25−48.24−1800
211.11−48.14−2950211.28−48.19−1000211.27−48.24−1930
211.15−48.14−2550211.3−48.19−1780211.29−48.24−2000
211.19−48.14−2350211.19−48.19−1150211.31−48.24−2250
211.23−48.14−2195211.2−48.195−850211.36−48.24−2800
211.27−48.14−2080211.21−48.195−600211.4−48.24−3220
211.3−48.14−2450211.22−48.195−570211.44−48.24−3500
211.34−48.14−2925211.23−48.195−555211.53−48.24−3650
211.38−48.14−3125211.24−48.195−580211.65−48.24−4250
211.04−48.15−3450211.25−48.195−700211.18−48.25−2150
211.16−48.15−2110211.26−48.195−750211.2−48.25−1840
211.18−48.15−2100211.27−48.195−875211.22−48.25−2275
211.2−48.15−1760211.28−48.195−1020211.24−48.25−2275
211.22−48.15−1920211.05−48.2−3275211.26−48.25−2150
211.24−48.15−1900211.09−48.2−2865211.28−48.25−2250
211.26−48.15−1750211.13−48.2−2480210.93−48.26−4250
211.28−48.15−2110211.15−48.2−2025211.11−48.26−3240
211.51−48.15−3950211.17−48.2−1375211.15−48.26−2675
211.6−48.15−4250211.18−48.2−1000211.19−48.26−2100
211.09−48.16−2950211.19−48.2−825211.23−48.26−2575
211.13−48.16−2570211.2−48.2−700211.27−48.26−2400
211.15−48.16−1950211.21−48.2−580211.3−48.26−2550
211.17−48.16−1750211.22−48.2−510211.34−48.26−2820
211.19−48.16−1480211.23−48.2−500211.38−48.26−3050
211.2−48.16−1325211.24−48.2−550211.42−48.26−3400
211.21−48.16−1350211.25−48.2−600211.06−48.28−3725
211.23−48.16−1650211.26−48.2−735211.13−48.28−3120
211.25−48.16−1375211.27−48.2−875211.17−48.28−2800
211.27−48.16−1780211.28−48.2−1150211.21−48.28−3050
211.29−48.16−2125211.29−48.2−1500211.25−48.28−2925
211.31−48.16−2200211.31−48.2−2150211.28−48.28−2775
211.36−48.16−2940211.36−48.2−3000211.32−48.28−2920
211.42−48.16−3450211.4−48.2−3380211.36−48.28−3190
211.19−48.165−1150211.48−48.2−3780211.4−48.28−3260
211.2−48.165−1125211.57−48.2−4025211.49−48.28−3780
211.21−48.165−1150211.18−48.205−950211.59−48.28−4050
211.25−48.165−1125211.19−48.205−800211.26−48.3−3250
211.14−48.17−2250211.2−48.205−740211.3−48.3−3140
211.16−48.17−1875211.21−48.205−595210.99−48.32−4250
211.18−48.17−1340211.22−48.205−595211.08−48.32−3950
211.19−48.17−1075211.23−48.205−490211.15−48.32−3750
211.2−48.17−850211.24−48.205−650211.22−48.32−3630
211.21−48.17−850211.25−48.205−748211.28−48.32−3420
211.22−48.17−1100211.26−48.205−850211.36−48.32−3420
211.23−48.17−1375211.27−48.205−1000211.46−48.32−3735
211.24−48.17−1175211.16−48.21−1700211.56−48.32−4015
211.25−48.17−950211.18−48.21−1200211.66−48.32−4250
211.26−48.17−1300211.19−48.21−1000211.18−48.35−4010
211.28−48.17−1825211.2−48.21−850211.1−48.37−4250
211.3−48.17−1850211.21−48.21−765211.26−48.37−3950
211.32−48.17−2110211.22−48.21−780211.34−48.37−3850
211.19−48.175−1125211.23−48.21−560211.42−48.37−3900
211.2−48.175−800211.24−48.21−750211.5−48.37−4050
211.21−48.175−700211.25−48.21−850211.6−48.39−4250
211.22−48.175−1020211.26−48.21−1040211.22−48.4−4250
211.23−48.175−1175211.27−48.21−1200211.3−48.42−4250
211.24−48.175−900211.28−48.21−1300211.38−48.42−4250
211.25−48.175−900211.3−48.21−1600
Table 10. Rainfall data.
Table 10. Rainfall data.
StationLocationAverage Rainfall (mm)
LongitudeLatitudeFebMarchMay
Chuping100.26676.483368.661.088.0
Langkawi Island99.73336.333349.840.6166.0
Alor Setar100.40006.200099.4277.867.4
Butterworth100.38335.466731.658.9143.2
Prai100.40005.350033.8208.1153.4
Bayan Lepas100.26675.300039.8125.2144.4
Ipoh101.10004.5833242.4364.242.6
Cameron Highlands101.36674.4667117.2252.0223.2
Lubok Merbau100.90004.800062.6156.498.4
Sitiawan100.70004.216749.844.426.8
Subang101.55003.1167199.0329.268.2
Petaling Jaya101.65003.1000139.8321.0196.2
KLIA (Sepang)101.70002.716778.6186.2188.8
Melaka102.25002.266762.4113.8183.4
Batu Pahat102.98331.8667219.0182.0195.0
Kluang103.31002.016739.492.4130.2
Senai103.66671.6333176.3148.6296.0
Kota Bahru102.28336.16677.0115.2109.2
Kuala Krai102.20005.533316.6166.0238.7
Kuala Terengganu103.10005.38330.2121.064.8
Kuantan103.21673.783335.279.2270.4
Batu Embun102.35003.9667103.2146.2256.2
Temerloh102.38333.466725.6114.2324.2
Muadzam Shah103.08333.050085.0131.6204.8
Mersing103.83332.450016.4183.4196.2
Table 11. Minimum value (mm).
Table 11. Minimum value (mm).
Average Rainfall (mm)Minimum Value (mm)
Feb−259.9196
March−165.0851
May−71.3284
Table 12. Digital elevation data of Kalumpang Agricultural Station.
Table 12. Digital elevation data of Kalumpang Agricultural Station.
XYZXYZXYZ
0073.706681.4014483.60
0175.006782.9014583.40
0276.207072.2514684.40
0377.407174.4014785.45
0478.607275.8515079.00
0579.707377.4015180.30
0680.807479.1015282.20
0781.707580.5015382.20
1073.257681.6015483.80
1174.607783.5015583.90
1275.808072.8015684.75
1377.258174.7015785.70
1478.458276.0016079.75
1579.708377.8016181.60
1680.858479.6016282.70
1782.208580.9516382.80
2072.908682.1516484.25
2174.108783.4016584.25
2275.609277.0016685.20
2377.009378.0016785.90
2478.609480.2517080.40
2579.609581.4017181.50
2681.159682.5017283.30
2782.309783.8017383.30
3072.2510277.5517484.75
3173.8010379.2017584.75
3275.7010480.7017685.45
3376.8010581.7517786.10
3478.4010683.1518081.20
3579.8010784.1518182.10
3681.1011278.4018283.80
3782.4011379.8018383.80
4072.2011481.2018485.15
4173.7011582.3018585.10
4275.5011683.4518685.60
4377.0011784.6518786.20
4478.4012177.5019081.70
4579.8012280.4019182.75
4681.0512380.4019284.25
4782.4512482.8019384.25
5071.1512582.8019485.40
5173.7512683.7019585.40
5275.7512784.7019685.80
5377.1513178.5019786.30
5478.5013280.8020082.50
5579.9013380.8020182.80
5681.4013483.5020284.60
5782.6013583.5020384.60
6072.1513684.0020485.10
6173.7513785.0020585.60
6275.8014078.5020686.00
6377.2514179.3020786.50
6478.8014281.60
6580.2014381.10

Share and Cite

MDPI and ACS Style

Ali, F.A.M.; Abdul Karim, S.A.; Saaban, A.; Hasan, M.K.; Ghaffar, A.; Nisar, K.S.; Baleanu, D. Construction of Cubic Timmer Triangular Patches and its Application in Scattered Data Interpolation. Mathematics 2020, 8, 159. https://doi.org/10.3390/math8020159

AMA Style

Ali FAM, Abdul Karim SA, Saaban A, Hasan MK, Ghaffar A, Nisar KS, Baleanu D. Construction of Cubic Timmer Triangular Patches and its Application in Scattered Data Interpolation. Mathematics. 2020; 8(2):159. https://doi.org/10.3390/math8020159

Chicago/Turabian Style

Ali, Fatin Amani Mohd, Samsul Ariffin Abdul Karim, Azizan Saaban, Mohammad Khatim Hasan, Abdul Ghaffar, Kottakkaran Sooppy Nisar, and Dumitru Baleanu. 2020. "Construction of Cubic Timmer Triangular Patches and its Application in Scattered Data Interpolation" Mathematics 8, no. 2: 159. https://doi.org/10.3390/math8020159

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop