Fractional Diffusion–Wave Equation with Application in Electrodynamics
Abstract
:1. Introduction
2. Fractional Differentiation
3. Domain, Regular Solutions, and Problem
4. Preliminaries
5. Solution Representation
6. Solution Uniqueness
7. Existence Theorem
8. Application in Electrodynamics
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wyss, W. The fractional diffusion equation. J. Math. Phys. 1986, 27, 2782–2785. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Kochubei, A.N. Diffusion of fractional order. Differ. Equ. 1990, 26, 485–492. [Google Scholar]
- Fujita, Y. Integrodifferential equation which interpolates the heat equation and the wave equation I, II. Osaka J. Math. 1990, 27, 309–321, 797–804. [Google Scholar]
- Mainardi, F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Engler, H. Similiraty solutions for a class of hyperbolic integrodifferential equations. Differ. Integral Equ. 1997, 10, 815–840. [Google Scholar]
- Gorenflo, R.; Iskenderov, A.; Luchko, Y. Mapping between solutions of fractional diffusion-wave equations. Fract. Calcul. Appl. Anal. 2000, 3, 75–86. [Google Scholar]
- Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 2001, 4, 153–192. [Google Scholar]
- Agrawal, O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 2002, 29, 145–155. [Google Scholar] [CrossRef]
- Pskhu, A.V. Solution of the First Boundary Value Problem for a Fractional-Order Diffusion Equation. Differ. Equ. 2003, 39, 1359–1363. [Google Scholar] [CrossRef]
- Pskhu, A.V. Solution of Boundary Value Problems for the Fractional Diffusion Equation by the Green Function Method. Differ. Equ. 2003, 39, 1509–1513. [Google Scholar] [CrossRef]
- Eidelman, S.D.; Kochubei, A.N. Cauchy problem for fractional diffusion equations. J. Differ. Equ. 2004, 199, 211–255. [Google Scholar] [CrossRef] [Green Version]
- Orsingher, E.; Beghin, L. Time-fractional telegraph equations and telegraph processes with brownian time. Probab. Theory Relat. Fields 2004, 128, 141–160. [Google Scholar]
- Voroshilov, A.A.; Kilbas, A.A. The Cauchy problem for the diffusion-wave equation with the Caputo partial derivative. Differ. Equ. 2006, 42, 638–649. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Pilipovic, S.; Zorica, D. A diffusion wave equation with two fractional derivatives of different order. J. Phys. Math. Theor. 2007, 40, 5319–5333. [Google Scholar] [CrossRef]
- Pskhu, A.V. The fundamental solution of a diffusion-wave equation of fractional order. Izv. Math. 2009, 73, 351–392. [Google Scholar] [CrossRef]
- Kemppainen, J. Properties of the single layer potential for the time fractional diffusion equation. J. Integral Equ. Appl. 2011, 23, 541–563. [Google Scholar] [CrossRef]
- Bazhlekova, E. On a nonlocal boundary value problem for the two-term time-fractional diffusion-wave equation. Aip Conf. Proc. 2013, 1561, 172–183. [Google Scholar]
- Al-Refai, M.; Luchko, Y. Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications. Fract. Calcul. Appl. Anal. 2014, 17, 483–498. [Google Scholar] [CrossRef]
- Kochubei, A.N. Asymptotic properties of solutions of the fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 2014, 17, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Mamchuev, M.O. Necessary non-local conditions for a diffusion-wave equation. Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser. 2014, 7, 45–59. [Google Scholar] [CrossRef]
- Tuan, N.H.; Kirane, M.; Luu, V.C.H.; Bin-Mohsin, B. A regularization method for time-fractional linear inverse diffusion problems. Electron. J. Differ. Equ. 2016, 290, 1–18. [Google Scholar]
- Pskhu, A.V. Fractional diffusion equation with discretely distributed differentiation operator. Sib. Elektron. Mat. Izv. 2016, 13, 1078–1098. [Google Scholar]
- Mamchuev, M.O. Solutions of the main boundary value problems for a loaded second-order. parabolic equation with constant coefficients. Differ. Equ. 2016, 52, 789–797. [Google Scholar] [CrossRef]
- Pskhu, A.V. The first boundary-value problem for a fractional diffusion-wave equation in a non-cylindrical domain. Izv. Math. 2017, 81, 1212–1233. [Google Scholar] [CrossRef]
- Fedorov, V.E.; Streletskaya, E.M. Initial-value problems for linear distributed-order differential equations in Banach spaces. Electron. J. Differ. Equ. 2018, 176, 1–17. [Google Scholar]
- Kemppainen, J. Layer potentials for the time-fractional diffusion equation. In Handbook of Fractional Calculus with Applications. Volume 2: Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 181–196. [Google Scholar]
- Masaeva, O.K. Dirichlet problem for a nonlocal wave equation with Riemann- Liouville derivative. Vestnik KRAUNC. Fiz.-mat. nauki. 2019, 27, 6–11. [Google Scholar]
- Pskhu, A.V. Green Functions of the First Boundary-Value Problem for a Fractional Diffusion–Wave Equation in Multidimensional Domains. Mathematics 2020, 8, 464. [Google Scholar] [CrossRef] [Green Version]
- Pskhu, A.V. Stabilization of solutions to the Cauchy problem for fractional diffusion-wave equation. J. Math. Sci. 2020, 250, 800–810. [Google Scholar] [CrossRef]
- Kilbas, A.A. Partial fractional differential equations and some of their applications. Analysis 2010, 30, 35–66. [Google Scholar] [CrossRef]
- Pskhu, A.V. Partial Differential Equations of Fractional Order; Nauka: Moscow, Russia, 2005. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Math. Stud.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Kochubei, A.; Luchko, Y. (Eds.) Handbook of Fractional Calculus with Applications. Volume 2: Fractional Differential Equations; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Nakhushev, A.M. Fractional Calculus and Its Applications; Fizmatlit: Moscow, Russia, 2003. [Google Scholar]
- Uchaikin, V.V. Method of Fractional Derivatives; Artishok: Ulyanovsk, Russia, 2008. [Google Scholar]
- Atanacković, T.M.; Pilipović, S.; Stanković, B.; Zorica, D. Fractional Calculus with Applications in Mechanics; ISTE, Wiley: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar]
- Tarasov, V. (Ed.) Handbook of Fractional Calculus with Applications. Volumes 4 and 5: Applications in Physics; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Tarasov, V.E. On History of Mathematical Economics: Application of Fractional Calculus. Mathematics 2019, 7, 509. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.-P.; Korbel, J.; Luchko, Y. Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations. Mathematics 2019, 7, 796. [Google Scholar] [CrossRef] [Green Version]
- Tychonoff, A. Théorèmes d’unicité pour l’équation de la chaleur. Mat. Sb. 1935, 42, 199–216. [Google Scholar]
- Kilbas, A.A.; Pierantozzi, T.; Trujillo, J.J.; V’azquez, L. On the solution of fractional evolution equations. J. Phys. A Math. Gen. 2004, 37, 3271–3283. [Google Scholar] [CrossRef]
- Gerasimov, A.N. A generalization of linear laws of deformation and its application to internal friction problem. Prikl. Mat. Mekh. 1948, 12, 251–260. [Google Scholar]
- Wright, E.M. On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
- Wright, E.M. The generalized Bessel function of order greater than one. Quart. J. Math. Oxford Ser. 1940, 11, 36–48. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics. Volume 2: The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
- Pskhu, A.V.; Rekhviashvili, S.S. Retarded Potentials in Fractional Electrodynamics. Mosc. Univ. Phys. Bull. 2020, 75, 316–319. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pskhu, A.; Rekhviashvili, S. Fractional Diffusion–Wave Equation with Application in Electrodynamics. Mathematics 2020, 8, 2086. https://doi.org/10.3390/math8112086
Pskhu A, Rekhviashvili S. Fractional Diffusion–Wave Equation with Application in Electrodynamics. Mathematics. 2020; 8(11):2086. https://doi.org/10.3390/math8112086
Chicago/Turabian StylePskhu, Arsen, and Sergo Rekhviashvili. 2020. "Fractional Diffusion–Wave Equation with Application in Electrodynamics" Mathematics 8, no. 11: 2086. https://doi.org/10.3390/math8112086
APA StylePskhu, A., & Rekhviashvili, S. (2020). Fractional Diffusion–Wave Equation with Application in Electrodynamics. Mathematics, 8(11), 2086. https://doi.org/10.3390/math8112086