# On the Geometric Mean Method for Incomplete Pairwise Comparisons

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

**Definition**

**1.**

**Definition**

**2.**

**Definition**

**3.**

**Definition**

**4.**

**Definition**

**5.**

**Definition**

**6.**

**Definition**

**7.**

**Definition**

**8.**

## 3. Priority Deriving Methods for Incomplete PC Matrices

## 4. Idea of the Geometric Mean Method for Incomplete PC Matrices

## 5. Illustrative Example

## 6. Properties of the Method

#### 6.1. Existence of a Solution

#### 6.2. Optimality

## 7. Summary

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Colomer, J.M. Ramon Llull: From ‘Ars electionis’ to social choice theory. Soc. Choice Welf.
**2011**, 40, 317–328. [Google Scholar] [CrossRef] - Condorcet, M. Essay on the Application of Analysis to the Probability of Majority Decisions; Imprimerie Royale: Paris, France, 1785. [Google Scholar]
- Thurstone, L.L. A Law of Comparative Judgment, reprint of an original work published in 1927. Psychol. Rev.
**1994**, 101, 266–270. [Google Scholar] [CrossRef] - Copeland, A.H. A “reasonable” social welfare function. In Seminar on Applications of Mathematics to Social Sciences; University of Michigan: Ann Arbor, MI, USA, 1951. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol.
**1977**, 15, 234–281. [Google Scholar] [CrossRef] - Doumpos, M.; Figueira, J.R. A multicriteria outranking approach for modeling corporate credit ratings: An application of the ELECTRE TRI-NC method. Omega
**2019**, 82, 166–180. [Google Scholar] [CrossRef] - Brans, J.; Mareschal, B. PROMETHEE Methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: London, UK, 2005; pp. 163–196. [Google Scholar]
- Qi, X.; Yu, X.; Wang, L.; Liao, X.; Zhang, S. PROMETHEE for prioritized criteria. Soft Comput.
**2019**, 23, 11419–11432. [Google Scholar] [CrossRef] - Jamshidi, A.; Jamshidi, F.; Ait-Kadi, D.; Ramudhin, A. A review of priority criteria and decision-making methods applied in selection of sustainable city logistics initiatives and collaboration partners. Int. J. Prod. Res.
**2019**, 57, 5175–5193. [Google Scholar] [CrossRef][Green Version] - Bana e Costa, C.; De Corte, J.M.; Vansnick, J. On the Mathematical Foundation of MACBETH. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: London, UK, 2005; pp. 409–443. [Google Scholar]
- Cinelli, M.; Kadziński, M.; Gonzalez, M.; Słowiński, R. How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega
**2020**, 96, 102261. [Google Scholar] [CrossRef] - Kułakowski, K.; Grobler-Dębska, K.; Wąs, J. Heuristic rating estimation: Geometric approach. J. Glob. Optim.
**2015**, 62, 529–543. [Google Scholar] [CrossRef][Green Version] - Liang, F.; Brunelli, M.; Rezaei, J. Consistency issues in the best worst method: Measurements and thresholds. Omega
**2019**, 96, 102175. [Google Scholar] [CrossRef] - Mohammadi, M.; Rezaei, J. Bayesian best-worst method: A probabilistic group decision making model. Omega
**2020**, 96, 102075. [Google Scholar] [CrossRef] - Greco, S.; Matarazzo, B.; Słowiński, R. Dominance-Based Rough Set Approach to Preference Learning from Pairwise Comparisons in Case of Decision under Uncertainty. In Computational Intelligence for Knowledge-Based Systems Design; Hüllermeier, E., Kruse, R., Hoffmann, F., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6178, pp. 584–594. [Google Scholar]
- Ramík, J. Strong reciprocity and strong consistency in pairwise comparison matrix with fuzzy elements. Fuzzy Optim. Decis. Mak.
**2018**, 17, 337–355. [Google Scholar] [CrossRef] - Domínguez, S.; Carnero, M.C. Fuzzy multicriteria modelling of decision making in the renewal of healthcare technologies. Mathematics
**2020**, 8, 944. [Google Scholar] [CrossRef] - Cavallo, B.; Brunelli, M. A general unified framework for interval pairwise comparison matrices. Int. J. Approx. Reason.
**2018**, 93, 178–198. [Google Scholar] [CrossRef][Green Version] - Kułakowski, K.; Mazurek, J.; Ramík, J.; Soltys, M. When is the condition of order preservation met? Eur. J. Oper. Res.
**2019**, 277, 248–254. [Google Scholar] [CrossRef][Green Version] - Wajch, E. From pairwise comparisons to consistency with respect to a group operation and Koczkodaj’s metric. Int. J. Approx. Reason.
**2019**, 106, 51–62. [Google Scholar] [CrossRef] - Janicki, R.; Zhai, Y. On a pairwise comparison-based consistent non-numerical ranking. Log. J. IGPL
**2012**, 20, 667–676. [Google Scholar] [CrossRef] - Brunelli, M. A survey of inconsistency indices for pairwise comparisons. Int. J. Gen. Syst.
**2018**, 47, 751–771. [Google Scholar] [CrossRef] - Bozóki, S.; Fülöp, J.; Poesz, A. On reducing inconsistency of pairwise comparison matrices below an acceptance threshold. Cent. Eur. J. Oper. Res.
**2015**, 23, 849–866. [Google Scholar] [CrossRef][Green Version] - Kułakowski, K.; Szybowski, J. The New Triad based Inconsistency Indices for Pairwise Comparisons. Procedia Comput. Sci.
**2014**, 35, 1132–1137. [Google Scholar] [CrossRef][Green Version] - Kułakowski, K. Inconsistency in the ordinal pairwise comparisons method with and without ties. Eur. J. Oper. Res.
**2018**, 270, 314–327. [Google Scholar] [CrossRef][Green Version] - Iida, Y. Ordinality consistency test about items and notation of a pairwise comparison matrix in AHP. In Proceedings of the International Symposium on the Analytic Hierarchy Process, University of Pittsburgh, Pittsburgh, PA, USA, 1 August 2009. [Google Scholar]
- Bozóki, S. Inefficient weights from pairwise comparison matrices with arbitrarily small inconsistency. Optimization
**2014**, 63, 1893–1901. [Google Scholar] [CrossRef][Green Version] - Kułakowski, K. On the Properties of the Priority Deriving Procedure in the Pairwise Comparisons Method. Fundam. Inf.
**2015**, 139, 403–419. [Google Scholar] [CrossRef][Green Version] - Koczkodaj, W.W.; Magnot, J.P.; Mazurek, J.; Peters, J.F.; Rakhshani, H.; Soltys, M.; Strzałka, D.; Szybowski, J.; Tozzi, A. On normalization of inconsistency indicators in pairwise comparisons. Int. J. Approx. Reason.
**2017**, 86, 73–79. [Google Scholar] [CrossRef][Green Version] - Harker, P.T. Alternative modes of questioning in the analytic hierarchy process. Math. Model.
**1987**, 9, 353–360. [Google Scholar] [CrossRef][Green Version] - Tone, K. Logarithmic Least Squares Method for Incomplete Pairwise Comparisons in the Analytic Hierarchy Process; Technical Report 94-B-2; Institute for Policy Science Research, Saitama University: Saitama, Japan, 1993. [Google Scholar]
- Bozóki, S.; Fülöp, J.; Rónyai, L. On optimal completion of incomplete pairwise comparison matrices. Math. Comput. Model.
**2010**, 52, 318–333. [Google Scholar] [CrossRef][Green Version] - Bozóki, S.; Tsyganok, V. The (logarithmic) least squares optimality of the arithmetic (geometric) mean of weight vectors calculated from all spanning trees for incomplete additive (multiplicative) pairwise comparison matrices. Int. J. Gen. Syst.
**2019**, 48, 362–381. [Google Scholar] [CrossRef] - Tsyganok, V. Combinatorial method of pairwise comparisons with feedback, data Recording. Storage Process.
**2000**, 2, 92–102. [Google Scholar] - Tsyganok, V. Investigation of the aggregation effectiveness of expert estimates obtained by the pairwise comparison method. Math. Comput. Model.
**2010**, 52, 538–544. [Google Scholar] [CrossRef] - Siraj, S.; Mikhailov, L.; Keane, J.A. Enumerating all spanning trees for pairwise comparisons. Comput. Oper. Res.
**2012**, 39, 191–199. [Google Scholar] [CrossRef] - Lundy, M.; Siraj, S.; Greco, S. The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis. Eur. J. Oper. Res.
**2017**, 257, 197–208. [Google Scholar] [CrossRef][Green Version] - Koczkodaj, W.W.; Herman, M.W.; Orlowski, M. Managing Null Entries in Pairwise Comparisons. Knowl. Inf. Syst.
**2013**, 1, 119–125. [Google Scholar] [CrossRef][Green Version] - Koczkodaj, W.W.; Szybowski, J. Pairwise comparisons simplified. Appl. Math. Comput.
**2015**, 253, 387–394. [Google Scholar] [CrossRef][Green Version] - Ergu, D.; Kou, G.; Peng, Y.; Zhang, M. Estimating the missing values for the incomplete decision matrix and consistency optimization in emergency management. Appl. Math. Model.
**2016**, 40, 254–267. [Google Scholar] [CrossRef] - Alonso, S.; Chiclana, F.; Herrera, F.; Viedma-Herrera, E.; Alcalá-Fdez, J.; Porcel, C. A consistency-based procedure to estimate missing pairwise preference values. Int. J. Intell. Syst.
**2008**, 23, 155–175. [Google Scholar] [CrossRef] - Jandová, V.; Krejci, J.; Stoklasa, J.; Fedrizzi, M. Computing Interval Weights for Incomplete Pairwise-Comparison Matrices of Large Dimension—A Weak-Consistency-Based Approach. Fuzzy Syst. IEEE Trans.
**2017**, 25, 1714–1728. [Google Scholar] [CrossRef] - Zhou, X.; Hu, Y.; Deng, Y.; Chan, F.T.; Ishizaka, A. A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP. Ann. Oper. Res.
**2018**, 271, 1045–1066. [Google Scholar] [CrossRef][Green Version] - Alrasheedi, M.A. Incomplete pairwise comparative judgments: Recent developments and a proposed method. Decis. Sci. Lett.
**2019**, 8, 261–274. [Google Scholar] [CrossRef] - Oliva, G.; Setola, R.; Scala, A. Sparse and distributed Analytic Hierarchy Process. Automatica
**2017**, 85, 211–220. [Google Scholar] [CrossRef] - Kułakowski, K.; Talaga, D. Inconsistency indices for incomplete pairwise comparisons matrices. Int. J. Gen. Syst.
**2020**, 49, 174–200. [Google Scholar] [CrossRef][Green Version] - Gavalec, M.; Ramik, J.; Zimmermann, K. Decision Making and Optimization: Special Matrices and Their Applications in Economics and Management; Number 677 in Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Crawford, G.; Williams, C. The Analysis of Subjective Judgment Matrices; Technical Report R-2572-1-AF; The Rand Corporation: Santa Monica, CA, USA, 1985. [Google Scholar]
- Kaiser, H.F.; Serlin, R.C. Contributions to the method of paired comparisons. Appl. Psychol. Meas.
**1978**, 2, 423–432. [Google Scholar] [CrossRef][Green Version] - Kwiesielewicz, M. The logarithmic least squares and the generalized pseudoinverse in estimating ratios. Eur. J. Oper. Res.
**1996**, 93, 611–619. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kułakowski, K. On the Geometric Mean Method for Incomplete Pairwise Comparisons. *Mathematics* **2020**, *8*, 1873.
https://doi.org/10.3390/math8111873

**AMA Style**

Kułakowski K. On the Geometric Mean Method for Incomplete Pairwise Comparisons. *Mathematics*. 2020; 8(11):1873.
https://doi.org/10.3390/math8111873

**Chicago/Turabian Style**

Kułakowski, Konrad. 2020. "On the Geometric Mean Method for Incomplete Pairwise Comparisons" *Mathematics* 8, no. 11: 1873.
https://doi.org/10.3390/math8111873