A New Method Based on PROMETHEE and TODIM for Multi-Attribute Decision-Making with Single-Valued Neutrosophic Sets
Abstract
:1. Introduction
2. Preliminaries
2.1. Neutrosophic Sets
2.2. Single-Valued Neutrosophic Sets
- (1)
- if , then ;
- (2)
- if , then .
3. Decision Method
3.1. PROMETHEE Method
3.2. TODIM Method
4. A New Method Based on PROMETHEE and TODIM
5. Numerical Example and Comparative Analysis
5.1. Numerical Example
5.2. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K. Intuitionistic fuzzy sets. Int. J. Bioautomation 2016, 20, 87–96. [Google Scholar]
- Smarandache, F. A unifying field in logics: Neutrosophic logic. In Philosophy; American Research Press: Champaign, IL, USA, 1999; Volume 8, pp. 489–503. [Google Scholar]
- Nassereddine, M.; Azar, A.; Rajabzadeh, A.; Afsar, A. Decision making application in collaborative emergency response: A new PROMETHEE preference function. Int. J. Disaster Risk Reduct. 2019, 38, 2212–4209. [Google Scholar] [CrossRef]
- Selvachandran, G.; Quek, S.G.; Smarandache, F.; Broumi, S. An extended technique for order preference by similarity to an ideal solution (topsis) with maximizing deviation method based on integrated weight measure for single-valued neutrosophic sets. Symmetry 2018, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Sen, D.K.; Datta, S.; Mahapatra, S.S. Extension of TODIM for decision making in fuzzy environment: A case empirical research on selection of industrial robot. Int. J. Serv. Oper. Manag. 2017, 26, 238–276. [Google Scholar] [CrossRef]
- Lee, Y.S.; Shih, H.S. Incremental analysis for generalized TODIM. Cent. Eur. J. Oper. Res. 2016, 24, 901–922. [Google Scholar] [CrossRef]
- Arar, T.; Lan, S.K.; Dirik, C. Office location selection by fuzzy AHP and VIKOR. Int. J. Inf. Decis. Sci. 2019, 11, 36–54. [Google Scholar] [CrossRef]
- Singh, S.; Verma, K.; Tiwari, K. A novel approach for finding crucial node using ELECTRE method. Int. J. Mod. Phys. B 2020, 34, 217–979. [Google Scholar] [CrossRef]
- Stanujkic, D.; Zavadskas, E.K.; Smarandache, F.; Brauers, W.K.; Karabasevic, D. A neutrosophic extension of the MULTIMOORA method. Informatica 2017, 28, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Q.; Li, X.E. TODIM method based on multi-valued Neutrosophic set. Control. Decis. 2015, 6, 1139–1142. [Google Scholar]
- Xu, D.S.; Wei, C.; Wei, G.W. TODIM Method for single-valued neutrosophic multiple attribute decision making. Information 2017, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.X.; Guo, J. Improved risk assessment method based on interval hesitation fuzzy TODIM. Comput. Sci. 2020, 47, 225–229. [Google Scholar]
- Liu, P.D.; Teng, F. An extended TODIM method for multiple attribute group decision-making based on 2-dimension uncertain linguistic Variable. Complexity 2016, 21, 20–30. [Google Scholar] [CrossRef]
- Yu, S.M.; Wang, J.; Wang, J.Q. An extended TODIM approach with intuitionistic linguistic numbers. Int. Trans. Oper. Res. 2018, 25, 781–805. [Google Scholar] [CrossRef]
- Liu, N.Y. Intuitive linguistic TODIM multi-attribute group decision-making method based on Choquet integral. Math. Pract. Underst. 2020, 50, 10–19. [Google Scholar]
- Guo, Z.X.; Sun, F.F. TODIM decision-making method under single-valued Neutrosophic linguistic environment. J. Hebei Univ. 2019, 39, 561–567. [Google Scholar]
- Lin, M.W.; Wang, H.B.; Xu, Z.S. TODIM-based multi-criteria decision-making method with hesitant fuzzy linguistic term sets. Artif. Intell. Rev. 2019, 53, 1–15. [Google Scholar] [CrossRef]
- Liu, P.D.; Teng, F. Probabilistic linguistic TODIM method for selecting products through online product reviews. Inf. Sci. 2019, 485, 441–455. [Google Scholar] [CrossRef]
- Xu, D.; Hong, Y.; Xiang, K. A method of determining multi-attribute weights based on single-valued neutrosophic numbers and its application in TODIM. Symmetry 2019, 11, 506. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, J. Extension of the TODIM method to intuitionistic linguistic multiple attribute decision making. Symmetry 2017, 9, 95. [Google Scholar] [CrossRef]
- Liu, N.Y. Triangular intuitionistic fuzzy number multi-attribute decision-making method considering the psychological behavior of decision makers. J. Lanzhou Univ. Arts Sci. 2018, 32, 1–7. [Google Scholar]
- Tseng, M.L.; Lin, Y.H.; Tan, K.H.; Chen, R.H.; Chen, Y.H. Using TODIM to evaluate green supply chain practices under uncertainty. Appl. Math. Model. 2014, 38, 2983–2995. [Google Scholar] [CrossRef]
- Gai, L.; Peng, Z.Y.; Zhang, J.M.; Zhang, J.F. Emergency medical center location problem with people evacuation solved by extended TODIM and objective programming. J. Comb. Optim. 2019, 4, 1–26. [Google Scholar] [CrossRef]
- Ren, H.P.; Liu, M.F.; Zhou, H. Extended TODIM Method for MADM problem under trapezoidal intuitionistic fuzzy environment. Int. J. Comput. Commun. Control. 2019, 14, 220–232. [Google Scholar] [CrossRef]
- Krohling, A.R.; Pacheco, A.G.C. Interval-valued intuitionistic fuzzy TODIM. Procedia Comput. Sci. 2014, 31, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.L.; Xu, Z.S.; Gu, J. An extended TODIM based on cumulative prospect theory and its application in venture capital. Informatica 2019, 30, 413–429. [Google Scholar] [CrossRef]
- Liu, N.Y. Intuitionistic linguistic multi-attribute group decision making method based on PROMETHEE method. Stat. Decis. Mak. 2019, 35, 9–53. [Google Scholar]
- Feng, F.; Xu, Z.S.; Fujita, H.; Liang, M.Q. Enhancing PROMETHEE method with intuitionistic fuzzy soft sets. Int. J. Intell. Syst. 2020, 35, 1071–1104. [Google Scholar] [CrossRef]
- Feng, Q.Q.; Tan, Q.Y.; Zhang, H.R. Hesitant fuzzy PROMETHEE method based on possibility degree. Sci. Technol. Guide 2015, 33, 90–93. [Google Scholar]
- Qi, X.L.; Yu, X.H.; Wang, L.; Liao, X.L.; Zhang, S.J. PROMETHEE for prioritized criteria. Soft Comput. 2019, 23, 11419–11432. [Google Scholar] [CrossRef]
- Zhao, J.B.; Zhu, H.; Li, H. 2-Dimension linguistic PROMETHEE methods for multiple attribute decision making. Expert Syst. Appl. 2019, 127, 97–108. [Google Scholar] [CrossRef]
- Sun, S.Y.; Zhu, H.M. PROMETHEE priority function selection and parameter configuration method. Syst. Eng. Electron. Technol. 2017, 39, 120–124. [Google Scholar]
- Zhu, J.H.; Li, Y.L.; Wang, R. FMEA risk assessment based on prospect theory and PROMETHEE. Oper. Res. Manag. 2018, 27, 147–157. [Google Scholar]
- Liang, R.X.; Wang, J.Q.; Zhang, H.Y. Projection-based PROMETHEE methods based on hesitant fuzzy linguistic term sets. Int. J. Fuzzy Syst. 2018, 20, 2161–2174. [Google Scholar] [CrossRef]
- Wang, J.Q. PROMETHEE method and its application with incomplete information. Syst. Eng. Electron. Technol. 2019, 11, 95–99. [Google Scholar]
- Tian, X.J.; Liu, X.D.; Wang, L.D. An improved PROMETHEE II method based on axiomatic fuzzy sets. Neural Comput. Appl. 2014, 25, 1675–1683. [Google Scholar] [CrossRef]
- Wan, S.P.; Zou, W.C.; Zhong, L.J.; Dong, J.Y. Some new information measures for hesitant fuzzy PROMETHEE method and application to green supplier selection. Soft Comput. 2019, 24, 1–25. [Google Scholar] [CrossRef]
- Liu, P.D.; Cheng, S.F.; Zhang, Y.M. An extended multi-criteria group decision-making promethee method based on probability multi-valued neutrosophic sets. Int. J. Fuzzy Syst. 2019, 21, 2472–2489. [Google Scholar] [CrossRef]
- Sun, S.Y.; Qiu, Z.M.; Liu, Z.; Wang, H.Y. PROMETHEE weight setting method based on maximizing dispersion. In Proceedings of the 8th China Youth Operational Information Management Scholars Conference, Guilin, China, 18 August 2006. [Google Scholar]
- Chen, T.Y. An interval type-2 fuzzy PROMETHEE method using a likelihood-based outranking comparison approach. Inf. Fusion 2015, 25, 105–120. [Google Scholar] [CrossRef]
- Zhao, H.J.; Peng, Y.; Li, W. Revised PROMETHEE II for improving efficiency in emergency response. Procedia Comput. Sci. 2013, 17, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.M.; Zhang, X. PROMETHEE multi criteria decision making method based on cloud model. Fuzzy Syst. Math. 2018, 32, 92–103. [Google Scholar]
- Liu, N.Y. Interval hesitant fuzzy PROMETHEE multiple attribute decision making method based on Association. Pract. Underst. Math. 2018, 48, 17–25. [Google Scholar]
- Liang, X.D.; Miao, J.R.; Li, Y.J.; Yang, X.; Li, Z. Hazardous waste disposal enterprise selection in China using hesitant Fuzzy PROMETHEE. Int. J. Environ. Res. Public Health 2020, 17, 12. [Google Scholar] [CrossRef]
- Gao, Y.; Tang, X.P.; Zhou, X.H. Group multi-criteria fuzzy programming method based on PROMETHEE. Syst. Eng. Electron. Technol. 2007, 2, 205–208. [Google Scholar]
- Liu, P.D.; Guan, Z.L. Supply chain supplier selection based on entropy weight and PROMETHEE method. J. Beijing Jiaotong Univ. 2008, 2, 3–37. [Google Scholar]
- Ping, Y.N.; Wu, Q.; Zhou, L.G. Chen Huayou. Fuzzy multiple attribute decision making method based on two-dimensional linguistic evaluation information. Fuzzy Syst. Math. 2018, 32, 155–168. [Google Scholar]
- Arya, V.; Kumar, S. A new picture fuzzy information measure based on Shannon entropy with applications in opinion polls using extended VIKOR–TODIM approach. Comput. Appl. Math. 2020, 39, 197. [Google Scholar] [CrossRef]
- Liu, D.H.; Liu, Y.Y.; Wang, L.Z. Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods. Int. J. Intell. Syst. 2019, 34, 2807–2834. [Google Scholar] [CrossRef]
- Gomes, L.F.A.M.; Lima, M.M.P.P. TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 1991, 16, 113–127. [Google Scholar]
- Gomes, L.F.A.M.; Lima, M.M.P.P. From modelling individual preferences to multicriteria ranking of discrete alternatives: A look at prospect theory and the additive difference model. Found. Comput. Decis. Sci. 1992, 17, 171–184. [Google Scholar]
- Sudha, S.; Gomes, L.F.A.M.; Vijayalakshmi, K.R. Assessment of MCDM problems by TODIM using aggregated weights. Neutrosophic Sets Syst. 2020, 35, 78–98. [Google Scholar]
Usual Function | V-Shape Function | Level Function |
Liner Function | Gauss Function | U-shape Function |
Alternative | |||
---|---|---|---|
0.4444 | 1.0000 | −0.5556 | |
1.0000 | 0.0000 | 1.0000 | |
0.7778 | 0.0541 | 0.7237 | |
0.0000 | 0.7838 | −0.7838 |
Ranking | Optimal Choice | |
---|---|---|
0.3 | ||
0.8 | ||
1.0 | ||
2.0 | ||
2.5 |
p, q | Ranking | Optimal Choice |
---|---|---|
p = 0.0, q = 0.1 | ||
p = 0.0, | ||
p = 0.0, q = 0.3 | ||
p = 0.0, q = 1.0 | ||
, |
Method | Ranking | Optimal Choice |
---|---|---|
TODIM | ||
PROMETHEE | ||
New method |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Wei, X.; Ding, H.; Bin, H. A New Method Based on PROMETHEE and TODIM for Multi-Attribute Decision-Making with Single-Valued Neutrosophic Sets. Mathematics 2020, 8, 1816. https://doi.org/10.3390/math8101816
Xu D, Wei X, Ding H, Bin H. A New Method Based on PROMETHEE and TODIM for Multi-Attribute Decision-Making with Single-Valued Neutrosophic Sets. Mathematics. 2020; 8(10):1816. https://doi.org/10.3390/math8101816
Chicago/Turabian StyleXu, Dongsheng, Xiaolan Wei, Hui Ding, and Hongqiong Bin. 2020. "A New Method Based on PROMETHEE and TODIM for Multi-Attribute Decision-Making with Single-Valued Neutrosophic Sets" Mathematics 8, no. 10: 1816. https://doi.org/10.3390/math8101816
APA StyleXu, D., Wei, X., Ding, H., & Bin, H. (2020). A New Method Based on PROMETHEE and TODIM for Multi-Attribute Decision-Making with Single-Valued Neutrosophic Sets. Mathematics, 8(10), 1816. https://doi.org/10.3390/math8101816