Strongly Unpredictable Oscillations of Hopfield-Type Neural Networks
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- (U1) are uniformly continuous;
- (U2) there exists a positive number H such that for all
- (U3) there exists a sequence , as , such that for each the sequence uniformly converges to on compact subsets.
- (C1) the function , in (1) belongs to space and there exist positive numbers and sequences as , which satisfy for each , and such that the function is strongly unpredictable;
- (C2) there exists a positive number L, such that , , for all ;
- (C3) the inequalities , are valid with positive numbers and ;
- (C4) and where is a positive number, for all and
- (C5);
- (C6).
4. Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramya, C.; Kavitha, G.; Shreedhara, K.S. Recalling of images using Hopfield neural network model. Natl. Conf. Comput. Commun. Controls 2011, 11, 2–4. [Google Scholar]
- Dong, Q.; Matsui, K.; Huang, X. Existence and stability of periodic solutions for Hopfield neural network equations with periodic input. Nonlinear Anal. 2002, 49, 471–479. [Google Scholar] [CrossRef]
- Chen, A.; Huang, L. Existence and attractivity of almost periodic solutions of Hopfield Neural Networks. Math. Acta Sci. 2001, 21, 505–511. [Google Scholar]
- Akhmet, M.; Karacaören, M. A Hopfield neural network with multi-compartmental activation. Neural Comput. Appl. 2018, 29, 815–822. [Google Scholar] [CrossRef]
- Cao, J. Global exponential stability of Hopfield neural networks. Int. J. Syst. Sci. 2001, 32, 233–236. [Google Scholar] [CrossRef]
- Akhmet, M.U.; Arugaslan, D.; Yilmaz, E. Stability analysis of recurrent neural networks with piecewise constant argument of generalized type. Neural Netw. 2010, 23, 805–811. [Google Scholar] [CrossRef]
- Cao, J.; Tao, Q. Estimation of the domain of attraction and the convergence rate of a Hopfield associative memory and an application. J. Comput. Syst. Sci. 2000, 60, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Cao, J. An estimation of the domain of attraction and convergence rate for Hopfield continuous feedback neural networks. Phys. Lett. A 2004, 325, 370–374. [Google Scholar] [CrossRef]
- Jin, D.; Peng, J. A New Approach for Estimating the Attraction Domain for Hopfield-Type Neural Networks. Neural Comput. 2009, 21, 101–120. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-stage neurons. Proc. Natl. Acad. Sci. USA 1982, 81, 3088–3092. [Google Scholar] [CrossRef] [Green Version]
- Ashwin, P.; Coombes, S.; Nicks, R. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience. J. Math. Neurosci. 2016, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Aihara, K.; Takabe, T.; Toyoda, M. Chaotic Neural Networks. Phys. Lett. A 1990, 6, 333–340. [Google Scholar] [CrossRef]
- Das, A.; Roy, A.B.; Das, P. Chaos in a three dimensional neural network. Appl. Math. Model. 2000, 24, 511–522. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, Q.D.; Yang, X.-S. Horseshoe chaos in a class of simple Hopfield neural networks. Chaos Solit. Fract. 2009, 39, 1522–1529. [Google Scholar] [CrossRef]
- Shibasaki, M.; Adachi, M. Response to external input of chaotic neural networks based on Newman—Watts model. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2011. [Google Scholar]
- Sang, N.; Zhang, T. Segmentation of FLIR images by Hopfield neural network with edge constraint. Pattern Recognit. 2001, 34, 811–821. [Google Scholar] [CrossRef]
- Raiko, T.; Valpola, H. Oscillatory neural network for image segmentation with biased competition for attention. Adv. Exp. Med. Biol. 2011, 718, 75–85. [Google Scholar]
- Cheng, K.C.; Lin, Z.C.; Mao, C.W. The Application of Competitive Hopfield Neural Network to Medical Image Segmentation. IEEE Trans. Med. Imaging 1996, 15, 560–567. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S. Adaptive lag synchronization of chaotic Cohen–Grossberg neural networks with discrete delays. Chaos 2012, 22, 033123. [Google Scholar] [CrossRef]
- Wen, S.P.; Wen, S.; Zeng, Z.; Huang, T.; Meng, Q.; Yao, W. Lag synchronization of switched neural networks via neural activation function and applications in image encryption. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1493–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzales-Miranda, J.M. Synchronization and Control of Chaos; Imperial College Press: London, UK, 2004. [Google Scholar]
- Ke, Q.; Oommen, J. Logistic Neural Networks: Their chaotic and pattern recognition propertie. Neurocomputing 2014, 125, 184–194. [Google Scholar] [CrossRef]
- He, G.; Chen, L.; Aihara, K. Associative memory with a controlled chaotic neural network. Neurocomputing 2008, 71, 2794–2805. [Google Scholar] [CrossRef]
- Erchova, I.; McGonigle, D.J. Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos 2008, 18, 015115. [Google Scholar] [CrossRef] [PubMed]
- Diaz, H.M.; Córdova, F.M.; Cañete, L.; Palominos, F.; Cifuentes, F.; Sánchez, C.; Herrera, M. Order and chaos in the brain: Fractal time series analysis of the EEG activity during a cognitive problem solving task. Proc. Comput. Sci. 2015, 55, 1410–1419. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Avitabile, D.; Montbrio, E.; Roxin, A. Network mechanisms underlying the role of oscillations in cognitive tasks. PLoS Comput. Biol. 2018, 14, e1006430. [Google Scholar] [CrossRef]
- Maguire, M.; Abel, A. What changes in neural oscillations can reveal about developmental cognitive neuroscience: Language development as a case in point. Dev. Cogn. Neurosci. 2013, 6, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Hammond, C.; Bergman, H.; Brown, P. Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends Neurosci. 2007, 30, 357–364. [Google Scholar] [CrossRef]
- Poincaré, H. Les Methodes Nouvelles De La Mecanique Celeste; Gauthier-Villars: Paris, France, 1899; reprint Dover Publications: New York, NY, USA, 1957; Volume III. [Google Scholar]
- Birkhoff, G.D. Dynamical Systems; Colloquium Publications: Providence, RI, USA, 1927. [Google Scholar]
- Akhmet, M.; Fen, M.O. Poincaré chaos and unpredictable functions. Commun. Nonlinear Sci. Nr. Simul. 2017, 48, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Akhmet, M.; Fen, M.O. Unpredictable points and chaos. Commun. Nonlinear Sci. Nr. Simul. 2016, 40, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Akhmet, M.; Fen, M.O. Existence of unpredictable solutions and chaos. Turk. J. Math. 2017, 41, 254–266. [Google Scholar] [CrossRef]
- Akhmet, M.; Fen, M.O. Non-autonomous equations with unpredictable solutions. Commun. Nonlinear Sci. Nr. Simul. 2018, 59, 657–670. [Google Scholar] [CrossRef]
- Akhmet, M.; Fen, M.O.; Tleubergenova, M.; Zhamanshin, A. Unpredictable solutions of linear differential and discrete equations. Turk. J. Math. 2019, 43, 2377–2389. [Google Scholar] [CrossRef]
- Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Quasilinear differential equations with strongly unpredictable solutions. Carpathion J. Math. 2020, 36, 3. [Google Scholar]
- Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Poincaré chaos for a hyperbolic quasilinear system. Miskolc Math. Notes 2019, 20, 33–44. [Google Scholar] [CrossRef]
- Akhmet, M.U.; Fen, M.O.; Alejaily, E.M. Dynamics with Chaos and Fractals; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Miller, A. Unpredictable points and stronger versions of Ruelle–Takens and Auslander–Yorke chaos. Topol. Appl. 2019, 253, 7–16. [Google Scholar] [CrossRef]
- Thakur, R.; Das, R. Strongly Ruelle-Takens, strongly Auslander-Yorke and Poincaré chaos on semiflows. Commun. Nonlinear Sci. Numer. Simulat. 2019, 81, 105018. [Google Scholar] [CrossRef]
- Akhmet, M.U.; Fen, M.O.; Alejaily, E.M. Extension of sea surface temperature unpredictability. Ocean Dyn. 2019, 69, 145–156. [Google Scholar] [CrossRef]
- Akhmet, M.; Fen, M.O.; Alejaily, E.M. A randomly determined unpredictable function. arXiv 2019, arXiv:1910.12758. [Google Scholar]
- Hartman, P. Ordinary Differential Equations; John Wiley: New York, NY, USA, 1964. [Google Scholar]
- Hale, J.; Koçak, H. Dynamics and Bifurcations; Springer: New York, NY, USA, 1991. [Google Scholar]
- Akhmet, M.; Fen, M.O. Replication of Chaos in Neural Networks, Economics and Physics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Akhmet, M.; Fen, M.O.; Tola, A. The Sequential Test for Chaos. arXiv 2019, arXiv:1904.09127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmet, M.; Tleubergenova, M.; Nugayeva, Z. Strongly Unpredictable Oscillations of Hopfield-Type Neural Networks. Mathematics 2020, 8, 1791. https://doi.org/10.3390/math8101791
Akhmet M, Tleubergenova M, Nugayeva Z. Strongly Unpredictable Oscillations of Hopfield-Type Neural Networks. Mathematics. 2020; 8(10):1791. https://doi.org/10.3390/math8101791
Chicago/Turabian StyleAkhmet, Marat, Madina Tleubergenova, and Zakhira Nugayeva. 2020. "Strongly Unpredictable Oscillations of Hopfield-Type Neural Networks" Mathematics 8, no. 10: 1791. https://doi.org/10.3390/math8101791
APA StyleAkhmet, M., Tleubergenova, M., & Nugayeva, Z. (2020). Strongly Unpredictable Oscillations of Hopfield-Type Neural Networks. Mathematics, 8(10), 1791. https://doi.org/10.3390/math8101791